

GUÍA DOCENTE QUÍMICA ORGÁNICA Y BIOQUÍMICA

Coordinación: MORALEJO VIDAL, MARÍA DE LOS ÁNGELES

Año académico 2017-18

Información general de la asignatura

Denominación	QUÍMICA ORGÁNICA Y BIOQUÍMICA				
Código	102519				
Semestre de impartición	20 Q(SEMESTRE) EVALUACIÓN CONTINUADA				
Carácter	Grado/Máster	Curso	Carácter	Modalidad	
	Grado en Ciencia y Tecnología de Alimentos	1	TRONCAL	Presencial	
	Grado en Ingeniería Agraria y Alimentaria	1	TRONCAL	Presencial	
Número de créditos ECTS	6				
Grupos	2GG,4GM,12GP				
Créditos teóricos	0				
Créditos prácticos	0				
Coordinación	MORALEJO VIDAL, MARÍA DE LOS ÁNGELES				
Departamento/s	QUIMICA				
Información importante sobre tratamiento de datos	Consulte este enlace para obtener más información.				
Idioma/es de impartición	50% castellano 50% catalán				

Profesor/a (es/as)	Dirección electrónica profesor/a (es/as)	Créditos impartidos por el profesorado	Horario de tutoría/lugar
CASERO MAZO, EUDOXIO TOMÁS	casero@quimica.udl.cat	8,3	
LARA AYALA, ISABEL	lara@quimica.udl.cat	6,3	
MORALEJO VIDAL, MARÍA DE LOS ÁNGELES	mmv@quimica.udl.cat	3,7	
RIBA VILADOT, MAGIN	mriba@quimica.udl.cat	3,7	

Información complementaria de la asignatura

La asignatura "Química Orgánica y Bioquímica", conjuntamente con "la Química Básica" y la "Termodinámica y Cinética Química", aporta conocimientos básicos, fundamentales para la comprensión profunda de otras muchas materias posteriores del Grado. Un buen conocimiento de los conceptos impartidos en estas asignaturas resulta imprescindible para la comprensión y el aprovechamiento de materias fundamentales y optativs relacionadas con la bioquímica aplicada y la biotecnologia, la microbiologia, la fisiologia y producción vegetal y animal, las ciències del suelo y la ciència y tecnologia de alimentos.

Recomendaciones:

Es conveniente haber cursado y asimilado correctamente la assignatura "Química General" del primer cuatrimestre.

Objetivos académicos de la asignatura

Los objetivos a lograr incluyen:

- RA1: Adquirir una comprensión sólida de las propiedades químicas de los alimentos y de las modificaciones que experimentan en ser procesados.
- RA2: Asentar principios básicos para la comprensión de asignaturas a cursar posteriormente.
- RA3: Lograr un buen conocimiento del método científico y de la importancia de las demostraciones experimentales para la comprobación d'hipótesis.
- RA4: Resolver problemas y casos relacionados con la asignatura.
- RA5: Conocer el material de laboratorio más habitual, manipularlo correctamente y conocer las normas mínimas de

seguridad a seguir.

RA6: Elaborar correctamente un informe de prácticas.

Competencias

Competencias generales

Se garantizarán, como mínimo las siguientes competencias básicas:

CG1: Que los estudiantes hayan demostrado poseer y comprender conocimientos a partir de la base de la educación secundaria general a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de dicha área.

CG2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio

CG3: Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

CG4: Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado

CG5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

Además, el graduado ha de ser capaz de:

CG6: Analizar situaciones concretas, definir problemas, tomar decisiones e implementar planes de actuación en la búsqueda de soluciones.

CG7: Interpretar estudios, informes, datos y analizarlos numéricamente.

CG8: Seleccionar y manejar las fuentes de información escritas e informatizadas disponibles relacionadas con la actividad profesional.

CG9: Utilizar las herramientas informáticas y de la comunicación existentes como soporte para el desarrollo de su actividad profesional (competencia estratégica UdL))

CG10: Trabajar solo y en equipo multidisciplinar.

CG11: Entender y expresarse con la terminología adecuada.

CG12: Presentar correctamente información de forma oral y escrita (competencia estratégica UdL)

Competencias específicas

El graduado en Ciencia y Tecnología de Alimentos después de finalizar sus estudios habrá adquirido los siguientes conocimientos y competencias:

CE2: Conocer y saber aplicar los fundamentos químicos necesarios por el desarrollo de otras disciplinas y de las actividades propias de la profesión.

CE5: Conocer los procesos básicos de un laboratorio y saber utilizar equipos, hacer ir reactivos, cumplir condiciones de seguridad y elaborar informes.

CE6: Saber plantear y resolver problemas aplicando correctamente los conceptos adquiridos a situaciones concretas.

CE7: Conocer los nutrients básicos, su metabolismo y su función en el cuerpo humano. CE10: Contextualizar los conceptos básicos de la nutrición humana con otras ciencias y disciplinas afines, en particular en los procesos de fabricación de alimentos.

CE14: Conocer la composición química de los alimentos y sus reacciones químicas.

CE15: Relacionar la composición de los alimentos con sus propiedades físicas, químicas y tecnológicas.

CE27: Interpretar los cambios físicos y químicos que se producen durante los diferentes procesos de elaboración de alimentos.

CE28: Modificar los procesos de elaboración de un alimento en base a unos objetivos.

Contenidos fundamentales de la asignatura

TEMARIO

1. Introducción (3 h).

Objeto de la Química Orgánica y la Bioquímica. Enlaces en Química Orgánica. Teoría de Lewis. Reglas de la química estructural. Carga formal. Estructuras resonantes. Teoría de la repulsió de las parejas de electrones. Fuerzas intermoleculars en Química Orgánica. Grupos funcionales. Radical químico.

2. Cinética química (3 h).

Concepto de velocidad de reacción. Constante de velocidad de reacción. Orden de la reacción. Concepto de tiempo de vida mediana. Estudio de procesos con cinéticas de orden 0, 1 y 2. Sistemas para determinar el orden de una reacción. Mecanismo de las reacciones. Etapas de una reacción. Estado de transición e intermedio. Energía de activación. Efecto de la temperatura sobre la velocidad de la reacción. Ley d'Arrhenius. Efecto del catalizador sobre la velocidad de la reacción.

3. Isomeria (2 h).

Isomeria. Tipos de isómeros. Isómeros estructurales. Estereoisómeros. Isómeros ópticos. Actividad óptica. Mezclas racémicas. Representación de los estereoisómers. Configuraciones absolutas R, S. Configuraciones relativas D, L. Diastereoisómers. Formas meso. Estereoisómeros de ciclos y de doble enlace.

4. Alcanos y cicloalcanos. Concepto de conformaciones (2 h).

Características y estructura de los alcanos. Hidrocarburos lineales, ramificados y ciclos. Nomenclatura de los alcanos. Propiedades físicas y químicas de los alcanos. Análisis de Combustión. Petróleo. Refino. Cracking. Análisis conformacional. Proyecciones de Newman. Confórmeros en compuestos acíclicos y en compuestos cíclicos.

5. Derivados halogenados. Reacciones de sustitución nucleófila y eliminación (2 h).

Características y estructura de los derivados halogenados. Nomenclatura. Propiedades físicas de los derivados halogenados. Propiedades químicas. Reacciones de sustitución nucleófila. Nucleófilo y centro electrófil. Nucleófilo y base. Reacciones de eliminación.

6. Alquenos y alquinos. Reacciones de adición (3 h).

Características y estructuras d'alquenos y alquins. Nomenclatura de alquenos y alquinos. Propiedades físicas de los alquenos: polaridad del doble enlace. Propiedades físicas de los alquinos. Propiedades químicas. Reacciones de adición. Adición de hidrógeno. Adición de halógenos. Adiciones iónicas. Reacciones de oxidación con ozono y permanganato.

7. Hidrocarburos aromáticos. Reacciones de sustitución electrófila (2 h).

Características y estructura de los compuestos aromáticos. Regla de Hückel. Nomenclatura. Propiedades físicas. Propiedades químicas. Reacciones de sustitución electrófila. Halogenación. Nitración. Sulfonación. Reacciones de Friedel-Crafts. Efecto de los substituyentes en la sustitución electrófila.

8. Alcoholes, fenoles y éteres (2 h).

Alcoholes. Características y estructuras. Nomenclatura. Propiedades físicas. Propiedades químicas. Reacciones deoxidación. Reacciones de eliminación. Fenoles. Características y estructuras. Nomenclatura. Propiedades físicas. Propiedades químicas. Reacciones ácido - base. Éteres. Características y estructuras. Nomenclatura. Propiedades físicas. Propiedades químicas. Formación de peróxidos.

9. Compuestos carbonílicos (2 h).

Características estructurales. Nomenclatura de los aldehídos y de las cetonas. Propiedades físicas. Propiedades químicas. Reacciones de adición. Adición deagua y dealcoholes. Adición de amoníaco y de aminas. Reacciones de oxidación-reducción.

10. Ácidos carboxílicos y derivados (3 h).

Ácidos carboxílicos. Características estructurales. Nomenclatura. Propiedades físicas. Carácter ácido. Formación de los derivados de los ácidos. Cloruros de ácido. Anhídridos de ácido. Esteres. Amidas. Reactividad de los ésteres. Hidrólisis. Saponificación. Reducción. Reactividad de las amidas. Hidrólisis. Reducción. Deshidratación. Formación de nitrilos.

11. Amines (2 h).

Características y estructuras. Nomenclatura. Propiedades físicas. Propiedades químicas. Carácter ácido - base. Reacción con nitrito.

12. Hidratos de Carbono (4 h).

Características. Monosacáridos. Clasificación. Propiedades. Ciclación de los monosacáridos. Mutarotación. Formación de derivados. Enlace glucosídico. Disacáridos. Tipos. Nomenclatura. Polisacáridos: características y tipos. Homopolisacáridos y heteropolisacáridos. Glucoconjugados.

13. Aminoácidos, péptidos y proteínas (4 h).

Aminoácidos proteicos. Estructura general. Clasificación. Propiedades. Quiralidad. Carácter anfótero. Equilibrios de disociación. Punto isoeléctrico. Ecuación de Henderson-Hasselbach. Enlace peptídico. Estructura y propiedades. Oligo- y polipéptidos. Proteínas fibrosas y globulares. Niveles estructurales. Estructura primaria, secundaria, terciaria y cuaternaria. Fuerzas implicadas en la estabilidad de las estructuras proteicas. Conformaciones nativas. Desnaturalitzación.

14. Enzimas (4 h).

Definición, propiedades y clasificación. Apoenzima y holoenzima. Concepto de cofactor, coenzima, cosubstratoy grupo prostético. Centro activo. Definición y propiedades. Cinética de Michaelis-Menten. Transformación de Lineweaver-Burk. Activación e inhibición de la actividad enzimática. Dependencia del pH y la temperatura. Desnaturalitzación de enzimas. Inhibidores irreversibles. Inhibidores reversibles. Inhibidores competitivos. Inhibidores acompetitivos.

15. Lípidos (2 h).

Características. Ácidos grasos. Nomenclatura. Estructura y propiedades. Lípidos saponificables: estructuras, tipos y propiedades. Lípidos insaponificables: estructuras, tipos y propiedades. Estructuras supramoleculares.

16. Ácidos nucleicos (2 h).

Nucleósidos y nucleótidos. Estructura. Funciones. Oligo- y polinucleótidos. Estructura. Enlace fosfodiéster. ADN. Estructura. Fuerzas implicadas en su estabilización. Funciones. ARN. Estructura. Tipos mayoritarios: ARNm, ARNt, ARNr. Características y funciones.

ACTIVIDADES PRÁCTICAS

Prácticas de laboratorio

Práctica 1: Uso de Modelos Moleculares (2 h).

Fundamento. Construcción de moléculas orgánicas mediante modelos moleculares. Estudios de conformaciones. Estudios de estereoisòmers. Enantiómeros. Diastereoisómeros. Formas meso.

Práctica 2: Procedimientos de extracción (2 h).

Fundamento. Extracción sólido – líquido y extracción líquido – líquido. Aplicaciones en separación de mezclas: Separaciones basadas en el pH, separaciones basadas en la polaridad.

Práctica 3: Procesos de separación (fundamentos de cromatografia y electroforesis) (2 h).

Fundamento. Tipo. Cromatografia en capa fina y columna. Aplicaciones. Análisis cualitativo de ergoesterol. Electroforesis. Aplicaciones. Migración iónica de cromato de cobre.

Práctica 4: Titulación de un aminoácido (2 h). Fundamento. Construcción de curvas de titulación de varios aminoácidos. Capacidad tamponante. Punto isoeléctrico.

Seminarios de problemas (10 h):

Sesiones en grupos reducidos donde se reforzarán, mediante la resolución de problemas y de preguntas de tipos test, los principales conceptos vistos en las clases de teoría. Comprenderán esencialmente aspectos de: SP1: Teoría de Lewis de los compuestos orgánicos. SP2: Concepto y tipo de isómeros. SP3: Reactividad y cinética química. SP4: Aminoácidos y péptidos. SP5: Cinética enzimática.

Ejes metodológicos de la asignatura

Tipo de		Activitadad prese Alumno	ncial	Activitadad no preso	encial	Avaluación	Tiempo to	tal
activdad	Descripción	Objectivos	Horas	Trabajo alumno	Horas	Horas	Horas	ECTS
Lección magistral	Clase magistral (Aula. Grupo grande)	Explicación de los principales conceptos	42	Estudio: conocer, comprender y sintetizar conocimientos.	42		92	3'7
Problemas y casos	Clase participativa (Aula. Grupo mediano)	Aplicación de los conceptos teóricos impartidos en las clases magistrales.	10	Resover problemas y casos.	30	8	40	1'6
Laboratorio	Práctica de laboratorioi (Grupo mediano)	Ejecución de la práctica: comprender fenómenos, medir	8	Redactar memoria	10		18	0'7
Total			60		82	8	150	6

Plan de desarrollo de la asignatura

			Horas	Horas	Evaluación	
Tipo de actividad	Contenido	Objectivos presenciales acumuladas		Teoria	Problemas	
Lección magistral	Tema 1	RA1-RA2	3	3		
Problemas i casos	SP1	RA4	2	5		
Lección magistral	Temas 2-4	RA1-RA2	7	12		
Problemas i casos	SP2	RA4	2	14		
Laboratori	Práctica 1	RA3-RA5-RA6	2	16	T1	P1
Lección magistral	Temas 5-11	RA1-RA2	16	32		
Problemas i casos	SP3	RA4	2	34		
Laboratori	Prácticas 2-3	RA3-RA5-RA6	4	38		
Lección magistral	Temas 12-13	RA1-RA2	8	46		
Problemas i casos	SP4	RA4	2	48		
Laboratori	Práctica 4	RA3-RA5-RA6	2	50		
Lección magistral	Tema 14	RA1-RA2	4	54	T2	P2
Problemas i casos	SP5	RA4	2	56		
Lección magistral	Temas 15-16	RA1-RA2	4	60		
Totales			60			

Sistema de evaluación

Tipo de actividad	Actividad de evaluación	Peso calificaciónqualificació	
actividad	Procedimiento Número		(%)
Lección magistral	Pruebas escritas sobre la la teoria del programa de la asignatura	2	40
Problemas y casos	Entrega y pruebas escritas sobre problemas y casos	2	40
Laboratorio	Entrega de memoria, pruebas escritas u orales	4	20

Total	Observaciones És obligatoria la asistencia a todas las sesiones de práctcias de laboratorio. A efectos de la calificación final, para superar la asignatura habrá que obtener una nota igual o superior a 4 puntos en las diferentes pruebas escritas. El promedio tendrá que ser igual o superior a 5 puntos.
	100

Bibliografía y recursos de información

Bibliografia básica

A) Química orgánica

- Hart H., Hart D.J., Craine L.E. (1995). Química Orgánica. McGraw Hill.
- Mc Murray J. (1994). Química Orgánica. Addison-Wesley Iberoamericana.
- Bruice P.Y. (1998). Organic Chemistry. Pretice Hall.
- Allinguer N.L., Cava M.P., De Jongh D.C., Johnson C.R., Lebel N.A., Stevens C. L. (1988). Química Orgánica. Reverté.
- Dept. Química UdL. Química Orgànica. Problemes Resolts. Ed. Universitat de Lleida. (2007)

B) Bioquímica

- Lehninger A.L. (2007). Principios de Bioquímica. Omega.
- Mathews Ch.K., van Holde K.E. (1998). Bioquímica. McGraw Hill. Interamericana.
- Stryer L. (2 vol.) (1995) . **Bioquímica**. Reverté.
- McKee T. (2003). Bioquímica. La base molecular de la vida. McGraw Hill. Interamericana.

Bibliografia complementária

A) Química orgánica

- Morrison R.T., Boyd R.N. (1990). Química Orgánica. Addison-Wesley Iberoamericana.
- Solomons T.W. Grahan (1998). Fundamentos de Química Orgánica. Limusa. México.
- Vollhardt, K.P.C.; Schore, N.E. (1996). Química Orgánica. Omega,
- Wade L.G. (1993). Química Orgánica. Prince Hall Hispanoamericana. México.

B) Bioquímica

- Herrera E. (1991). Bioquímica. Interamericana/McGraw Hill. Madrid.
- Horton H.R., Moran L.A., Ochs R.S., Rawn J.D., Scrimgeour K.G. (1996). Principles of Biochemistry. Prentice Hall.
- Rawn J.D. (1990). Bioquímica. Interamericana Cop./ McGraw-Hill.

