

GUÍA DOCENTE ALMACENAMIENTO DE ENERGÍA

Coordinación: DE GRACIA CUESTA, ALVARO

Año académico 2023-24

Información general de la asignatura

Denominación	ALMACENAMIENTO DE ENERGÍA				
Código	102148				
Semestre de impartición	20 Q(SEMESTRE) EVALUACIÓN CONTINUADA				
Carácter	Doble titulació: Grau en		Carácter	Modalidad	
			3	OBLIGATORIA	Presencial
	Grado en Ingo Energía y Sos		3	OBLIGATORIA	Presencial
Número de créditos de la asignatura (ECTS)	6				
Tipo de actividad, créditos y grupos				TEORIA	
			3		
	Número de grupos	1		1	
Coordinación	DE GRACIA CUESTA, ALVARO				
Departamento/s	INGENIERÍA INDUSTRIAL Y DE LA EDIFICACIÓN				
Distribución carga docente entre la clase presencial y el trabajo autónomo del estudiante	40% presencial 60% trabajo autónomo				
Información importante sobre tratamiento de datos	Consulte <u>este enlace</u> para obtener más información.				
Idioma/es de impartición	Inglés				
Distribución de créditos	Alvaro de Gracia (5.5 ECTS) Alicia Crespo (0.5 ECTS)				

Profesor/a (es/as)	Dirección electrónica\nprofesor/a (es/as)	Créditos impartidos por el profesorado	Horario de tutoría/lugar
DE GRACIA CUESTA, ALVARO	alvaro.degracia@udl.cat	3,6	
ORÓ PRIM, EDUARD	eduoro@diei.udl.cat	3,6	

Información complementaria de la asignatura

El curso presenta y analiza las diferentes tecnologías disponibles de almacenamiento de energía, incluyendo sistemas de almacenamiento de energía mecánica, eléctrica y térmica. d'energia.

Es **OBLIGATORIO** que los estudiantes traigan los siguientes equipos de protección individual (EPI) a las prácticas docentes.

- Bata de laboratorio azul UdL unisex
- Gafas de protección
- Guantes de protección mecánica

Pueden adquirirse a través de la tienda Údels de la UdL:

C/ Jaume II, 67 bajos Centro de Culturas y Cooperación Transfronteriza

http://www.publicacions.udl.cat/

El uso otros equipos de protección (por ejemplo tapones auditivos, mascarillas respiratorias, guantes de riesgo químico o eléctrico, etc.) dependerá del tipo de práctica a realizar. En este caso, el personal docente responsable informará sobre la necesidad de la utilización de EPI's específicos.

No traer los EPI's descritos o no cumplir las normas de seguridad generales que se detallan debajo comporta que el estudiante no pueda acceder a los laboratorios o tenga que salir de los mismos. La no realización de las prácticas docentes por este motivo comporta las **consecuencias en la evaluación** de la asignatura que se describen en esta quía docente.

NORMAS GENERALES DE SEGURIDAD EN LAS PRÁCTICAS DE LABORATORIO

- Mantener el lugar de realización de las prácticas limpio y ordenado. La mesa de trabajo tiene que quedar libre de mochilas, carpetas, abrigos...
- En el laboratorio no se puede ir con pantalones cortos ni faldas cortas.
- Llevar calzado cerrado y cubierto durante la realización de las prácticas.
- Llevar el pelo largo siempre recogido.
- Mantener las batas abrochadas para protegerse frente salpicaduras y derramamientos de sustancias químicas.
- No llevar pulseras, colgantes o mangas anchas que puedan ser atrapados por los equipos, montajes...
- Evitar llevar lentes de contacto, puesto que el efecto de los productos químicos es mucho más grande si se

introducen entre la lente de contacto y la córnea. Se puede adquirir uno cubre-gafas de protección.

- No comer ni beber dentro del laboratorio.
- Está prohibido fumar dentro de los laboratorios.
- Lavarse las manos siempre que se tenga contacto con algún producto químico y antes de salir del laboratorio.
- Seguir las instrucciones del profesor y de los técnicos de laboratorio y consultar cualquier duda sobre seguridad.

Para mayor información se puede consultar el manual de acogida del Servicio de Prevención de Riesgos Laborales de la UdL que se encuentra en: http://www.sprl.udl.cat/alumnes/index.html

Objetivos académicos de la asignatura

OBJETIVOS GENERALES DE LA ASIGNATURA

Dotar a los alumnos de conocimientos así como de técnicas, herramientas y habilidades necesarias para poder desarrolar eficazmente las actividades profesionales relacionadas con el almacenamiento de energía.

Para poder cumplir con este objetivo general, se concreta en:

- Conocer y entender los conceptos básicos de termodinámica y transferencia de calor
- Conocer los conceptos de almacenamiento de energía y su implementación en diferentes sectores
- Analizar los sistemas de almacenamiento de energía eléctrico y sus aplicaciones.
- Analizar los sistemas de almacenamiento de energía mecánica y sus aplicaciones.
- Analizar los sistemas de almacenamiento de energía térmica y sus aplicaciones.

Competencias

Competencias Básicas (Anexo I apartado 3.3 del Real Decreto 861/2010)

- **CB2.** Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
- CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
- **CB5.** Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

Competencias Generales según Orden CIN/311/2009 y criterios EPS

- **CG7.** Tener conocimientos de termodinámica aplicada y transferencia de calor, principios básicos y su aplicacion en la resolución de problemas de ingeniería.
- CG10. Tener conocimientos i uso de los principios de teoria de circuitos i máquinas eléctricas
- CG11. Tener conocimientos de los fundamentos de electrónica.
- CG12. Tener conocimientos de fundamentos de automatismos y métodos de control.

Competencias Específicas según Orden CIN/311/2009

- **CE12.** Tener conocimientos aplicados sobre energías renovables.
- CE15. Adquirir capacidad para comprender, interpretar y aplicar las normas regulatorias sobre energía y medio ambiente.
- CE18. Adquirir capacidad para el cálculo y diseño de instalaciones de almacenamiento de energía

Competencias Transversales aprobadas por la Comisión Plenaria de los Grados de Ingeniería Industrial, Ingeniería Informática e Ingeniería de la Edificación, reunida el 16 de Junio de 2008

- CT2. Dominio de una lengua estrangera.
- CT5. Adquirir nociones esenciales del pensamiento científico.

Contenidos fundamentales de la asignatura

- Capítulo1. Introducción al almacenamiento de energía térmica
- Capítulo 2. Termodinámica básica
- Capítulo 3. Almacenamiento de energía mecánica
- Capítulo 4. Almacenamiento de energía térmica
- Capítulo 5 Almacenamiento de energía basado en aire comprimido
- Capítulo 6 Almacenamiento de energía basado en electroquímica
- Capítulo 7. Almacenamiento de energía basado en hidrógeno
- Capítulo 8. Almacenamiento de energía basado en supercapacitores

Ejes metodológicos de la asignatura

Los ejes metodológicos de la asignatura se dividirán en:

- Clases magistrales: En las clases magistrales se exponen los contenidos de la asignatura de forma oral por parte de un profesor sin la participación activa del alumnado.
- Resolución de problemas: A la actividad de resolución de problemas, el profesorado presenta una cuestión compleja que el alumnado debe resolver, ya sea trabajando individualmente, o en equipo.
- Trabajo en grupo: Actividad de aprendizaje que se debe realizar mediante la colaboración entre los miembros de un grupo.
- Prácticas: Permiten aplicar y configurar, a nivel práctico, la teoría de un ámbito de conocimiento en un contexto concreto

Plan de desarrollo de la asignatura

El plan de desarrollo seguirá el orden de contenidos. Este plan podrá ser objeto de cambios en función del número de alumnos y la evolución del grupo. Todas las clases las impartirá el profesor Alvaro de Gracia.

Semana	Metodologia	Temario	Horas presenciales	Horas trabajo autónomo
1	Clase magistral	Introducción i presentación asignatura	2	3
1-2	Clase magistral y problemas	Introducción al almacenamiento de energía	6	9
3-4	Clase magistral y problemas	Termodinámica básica	6	9

4-5	Clase magistral y problemas	Almacenamiento de energía mecánica	6	9
6-7	Clase magistral y problemas	Almacenamiento de energía térmica	6	9
8	Clase magistral y problemas	Almacenamiento de energía basado en aire comprimido	4	6
9		Evaluación prueba escrita	2	3
10-13	Clase magistral y problemas	Electroquímica	14	21
13-14	Clase magistral y problemas	Almacenamiento de energía basado en hidrógeno	4	6
14-15	Clase magistral y problemas	Almacenamiento de energía basado en supercapacitores	4	6
16-17		Evaluación prueba escrita	2	3
19		Evaluación prueba escrita Recuperación	2	3

Sistema de evaluación

Bloque 1. Prueba escrita . Capítulos 1, 3, 4 i 5 (E1) 40%

Bloque 2. Prueba escrita . Capítulos 6, 7 i 8 (E2) 40%

Bloque3. Proyecto sobre aplicación de un sistema de almacenamiento (P) 20%

Nota asignatura antes de recuperación= 0.40*E1+0.40*E2+0.2*P

Habrá un examen de recuperación (R) con el contenido de E1 i E2 que valdrá un 80% de la nota.

Nota asignatura si recuperación = 0.8*R + 0.2*P

Evaluación alternativa. Examen con todo el contenido del curso (100%)

Bibliografía y recursos de información

1. Energy Storage: Systems and Components

1st Edition

Author: Alfred Rufer

ISBN 9781138082625

2. Engineering Energy Storage

1st Edition

Authors: Odne Stokke Burheim

ISBN: 9780128141007

