

GUÍA DOCENTE TECNOLOGÍA QUÍMICA

Coordinación: REY CASTRO, CARLOS

Año académico 2019-20

Información general de la asignatura

Denominación	TECNOLOGÍA QUÍMICA						
Código	101603						
Semestre de impartición	20 Q(SEMESTRE) EVALUACIÓN CONTINUADA						
Carácter	Grado/Máster Curso Carácter Modalida						
	Grado en Biot	ecnología	2	OBLIGATORIA	A Presencial		
Número de créditos de la asignatura (ECTS)	6						
Tipo de actividad, créditos y grupos	Tipo de actividad	PRALAB		PRAULA	TEORIA		
	Número de créditos	0.8		1.3	3.9		
	Número de grupos	4	2		1		
Coordinación	REY CASTRO, CARLOS						
Departamento/s	QUÍMICA						
Distribución carga docente entre la clase presencial y el trabajo autónomo del estudiante	60 horas presenciales 90 horas no presenciales						
Información importante sobre tratamiento de datos	Consulte <u>este enlace</u> para obtener más información.						
Idioma/es de impartición	Castellano 75% Inglés 25%						
Distribución de créditos	2,32 Lección magistral 2,32 Problemas y casos 0,64 Seminarios 0,32 Laboratorio 0,40 Aula de Informática						

Profesor/a (es/as)	Dirección electrónica\nprofesor/a (es/as)	Créditos impartidos por el profesorado	Horario de tutoría/lugar
GARCÉS GONZÁLEZ, JOSEP LLUÍS	joseplluis.garces@udl.cat	,6	
GÓMEZ FERNÁNDEZ, MARÍA	maria.gomez@udl.cat	1	
REY CASTRO, CARLOS	carlos.rey@udl.cat	8,1	

Información complementaria de la asignatura

El objetivo fundamental de esta asignatura es proporcionar los conceptos fisicoquímicos y de ingeniería básicos en los procesos de bioseparación y purificación, así como la adquisición de las habilidades básicas para su aplicación a los casos prácticos de interés en la especialidad.

Objetivos académicos de la asignatura

El estudiante, al superar la asignatura, debe ser capaz de:

- 1. Conocer y saber utilizar los conceptos fundamentales de la tecnología química y las diferentes metodologías propias de la disciplina.
- 2. Distinguir los diferentes conceptos con corrección.
- 3. Aplicar correctamente las fórmulas, con sus unidades correspondientes, e interpretar los resultados obtenidos
- 4. Utilizar las herramientas informáticas existentes en la resolución de problemas de cierta complejidad matemática
- 5. Relacionar los conceptos fisicoquímicos y de ingeniería adquiridos con los de matemáticas, física y biología que ha recibido.

Competencias

Competencias generales

El graduado en Biotecnología debe:

- Ser capaz de buscar y utilizar selectivamente fuentes de información necesarias para alcanzar los objetivos formativos.
- Interpretar la información científico-técnica con un sentido crítico, y ser capaz de hacer presentaciones basadas en esta información.
- · Ser capaz de realizar informes escritos y orales comprensibles sobre el trabajo realizado, con una justificación

basada en los conocimientos teórico-prácticos conseguidos (Competencia estratégica de la UdL).

- Trabajar en equipo, con una visión multidisciplinar y con capacidad para hacer una distribución racional y eficaz de tareas entre los miembros del equipo.
- Utilizar herramientas y técnicas de la información y comunicación para el análisis de datos y la elaboración de informes orales y escritos y otras actividades formativas y profesionales (Competencia estratégica de la UdL)
- Respetar los derechos fundamentales de igualdad entre hombres y mujeres, la promoción de los Derechos Humanos y los valores propios de una cultura de paz y de valores democráticos (Competencia estratégica de la UdL).
- Conocer y utilizar adecuadamente el vocabulario científico y técnico propio de los diferentes ámbitos de la Biotecnología.
- Trabajar en el laboratorio aplicando criterios de calidad y buena práctica.
- Conocer y saber utilizar el software y las bases de datos específicos en los diferentes ámbitos de la Biotecnología.
- Utilizar el método científico para analizar datos y diseñar estrategias experimentales con aplicaciones biotecnológicas.
- Ser capaz de desarrollar una actividad profesional de acuerdo con las normativas de seguridad y respeto al medio ambiente y con criterios éticos.
- Transmitir estrategias y aplicaciones tecnológicas en la empresa, basadas en los fundamentos generales de la economía de empresa.
- Adquirir criterios de elección de las técnicas analíticas más adecuadas para cada caso práctico concreto.

Competencias específicas (según documento Plan de Estudios)

- Conocer los principios básicos de la ingeniería química.
- Saber relacionar la estructura y la reactividad con las propiedades funcionales de las biomoléculas.
- Conocer los procedimientos de adquisición y preparación de las muestras para el análisis químico instrumental.
- Conocer los fundamentos, saber aplicar e interpretar las técnicas instrumentales de aplicación biotecnológica.

Contenidos fundamentales de la asignatura

Temario:

Tema 1. Introducción. Conceptos fisocoquímicos básicos de los procesos de bioseparación.

Bioseparaciones. Pureza y rendimiento.

Tema 2. Filtración. Microfiltración.

- 2.1.- Teoría general de la filtración: Ley de Darcy, tortas compresibles e incompresibles.
- 2.2.- Equipamiento para la filtración convencional.
- 2.3.- Pretratamiento: calentamiento, coagulación y floculación, adsorción sobre filtros.
- 2.4.- Filtros rotatorios continuos: formación y lavado de la torta.

Tema 3. Sedimentación. Centrifugación.

- 3.1.- Teoría general de la sedimentación de sólidos.
- 3.2.- Centrífugas: centrífuga tubular, centrífuga de discos.
- 3.3.- Escalado de la centrifugación.
- 3.4.- Filtración centrífuga.

Tema 4. Disrupción celular.

- 4.1.- La membrana celular.
- 4.2.- Métodos físicos: en medio seco y en medio húmedo.
- 4.3.- Métodos químicos: choque osmótico, solubilización.
- 4.4.- Métodos biológicos.
- 4.5.- Parámetros que afectan a la cinética de disrupción celular.

Tema 5. Extracción líquido-líquido.

- 5.1.- Teoría general de la extracción: ecuaciones básicas, cambio de disolvente, cambio de soluto por modificación de par iónico, cambio de soluto mediante la modificación del pH.
- 5.2.- Extracciones en sistema discontinuo (batch): métodos analíticos y gráficos.
- 5.3.- Extracciones en cascada: equipamiento, métodos analíticos y gráficos.
- 5.4.- Extracción diferencial.
- 5.5.- Extracción fraccionada.
- 5.6.- Sistemas acuosos bifásicos.

Tema 6. Adsorción.

- 6.1.- Teoría básica de la adsorción: adsorbentes comunes, isotermas de adsorción.
- 6.2.- Adsorción en sistemas discontinuos (batch).
- 6.3.- Adsorción en continuo en un tanque agitado.
- 6.4.- Adsorción sobre lecho fijo.

Tema 7. Ultrafiltración. Ósmosis inversa. Diálisis. Electrodiálisis.

- 7.1.- Teoría básica: membranas, presión osmótica, ecuaciones de transporte.
- 7.2.- Ósmosis inversa.
- 7.2.- Ultrafiltración.
- 7.3.- Electrodiálisis.

Tema 8. Cromatografía.

- 8.1.- Principios básicos. Cromatografía de exclusión molecular. Cromatografía de intercambio iónico. Cromatografía de afinidad.
- 8.1.- Absorbentes: clasificación, propiedades, estabilidad y regeneración.
- 8.2.- Rendimiento y pureza.
- 8.3.- Escalado.

Tema 9. Precipitación. Cristalización

- 9.1.- Precipitación por adición de un disolvente.
- 9.2.- Precipitación por adición de sales.
- 9.3.- Precipitación por efecto de la temperatura.
- 9.4.- Precipitación a gran escala: mezcla inicial, nucleación, crecimiento y floculación.
- 9.5.- Cristalización: saturación, pureza, nucleación y crecimiento del cristal.
- 9.6.- Distribución de tamaño de los cristales: densidad de población, cristales generados en procesos continuos, tamaño dominante.
- 9.7.- Cristalización en sistemas discontinuos (batch): curva de enfriamiento, escalado.
- 9.8.- Recristalización.

Tema 10. Secado. Liofilización y evaporación

- 10.1.- Conceptos básicos del secado: contenido en agua, velocidades de evaporación y calentamiento, efectos no deseados.
- 10.2.- Equipamiento para el secado: secado por conducción, secado adiabático.
- 10.3.- Conceptos básicos de la liofilización: congelado, sublimación (o secado primario) y desorción (o secado secundario).
- 10.4.- Equipamiento para la liofilización.
- Tema 11. Secuencias de purificación aplicadas a la industria biotecnológica.
- 11.1.- Análisis de las técnicas de separación disponibles y su interacción con los procesos de producción. Ejemplos: producción de enzimas comerciales, recuperación de polisacaridos, antibióticos, ácidos orgánicos y etanol.
- 11.2.- Operaciones combinadas: inmovilización, procesado del caldo del cultivo y recirculación.
- 11.3.- Operaciones adicionales: calidad del agua, recuperación de disolventes, eliminación de residuos y seguridad.

Actividades prácticas

- Práctica 1. Separación de mezclas de iones en una columna de intercambio iónico.
- Práctica 2. Separación de mezclas por adsorción de sobre carbón activo en un sistema discontinuo (batch).

Ejes metodológicos de la asignatura

Tipo de actividad	Descripción	Actividad presencial del alumno		Actividad no presencial del alumno		Evaluación	Tiempo total
		Objetivos	Horas	Trabajo del alumno	Horas	Horas	Horas/ECTS
Lección magistral	Clase magistral (Aula. Grupo grande)	Explicación de los principales conceptos	21	Estudio: Conocer, comprender y sintetizar conocimientos	32	5	58h /2.32 ECTS

Problemas y casos	Clase participativa (Aula. Grupo grande)	Resolución de problemas y casos	18	Aprender a resolver problemas y casos	35	5	58h /2.32 ECTS
Seminario	Clase participativa (Grupo mediano)	Realización de activitats de discussión o aplicación	8	Resolver problemas. Discutir	8		16h/ 0.64 ECTS
Laboratorio	Práctica de Laboratorio (Grupo mediano)	Ejecución de la práctica: comprender fenómenos, medir	8	Estudiar y Realizar memoria	0		8 h/0.32 ECTS
Aula de informática	Práctica de aula informática (Grupo mediano)	Ejecución de la práctica: comprender fenómenos, medir	5	Estudiar y Realizar memoria	5		10 h/0.4 ECTS
Actividades dirigidas	Trabajo del alumno (individual o en grupo)	Orientar al alumno en el trabajo (en horario de tutorias)		Realizar un trabajo bibliográfico, práctico, etc.			
Otros							
Totales			60		80	10	150h/6 ECTS

Sistema de evaluación

Examen teórico	Prácticas	Análisis de casos y problemas	Trabajo bibliográfico
40%	10%	40%	10%

Tipo de actividad	Actividad de evaluación		Peso en la cal
	Procedimiento	Número	
Lección magistral	Pruebas escritas sobre la teoría del programa de la asignatura	3	35
Problemes i casos	Pruebas escritas sobre aspectos prácticos del programa de la asignatura	3	35
Laboratorio	Entrega de memorias. Pruebas escritas u orales	1	10
Seminario	Pruebas escritas u orales	3	5
Aula informática	Entrega de memorias. Pruebas escritas u orales		5

Prácticas de campo	Entrega de memorias. Pruebas escritas u orales	0	0
Visitas	Entrega de memorias. Pruebas escritas u orales	0	0
Actividades dirigidas	Entrega del trabajo	1	10
otros			
Total			100

Bibliografía y recursos de información

Bibliografía básica

- Bailey, J. E., Ollis, D. F. 1986. Biochemical Engineering Fundamentals. McGraw Hill, New York, EEUU.
- Belter, P. A., Cussler, E. L., Wei-Shou H. 1988. Bioseparations: Downstream Processing for Biotechnology. John Wiley and Sons, New Cork, EEUU.
- Doran P. M. 1995. Principios de Ingeniería de los Bioprocesos. Editorial Acribia, Zaragoza, España.
- Gòdia, F., López, J. (Editores). 1998. Ingeniería Bioquímica. Editorial Síntesis, Madrid, España.
- Harrison R.G., Todd P., Rudge S.R., Petrides D.P. 2003. Bioseparations Science and Engineering. Oxford University Press, EEUU.
- Recasens F. 2018. Procesos de separación de biotecnología industrial. Publicacions académiques UPC, Barcelona.

Bibliografía complementaria

- Ahuja, S. (Editor). 2000. Handbook of bioseparations. Academic Press, San Diego, EEUU.
- · Asenjo, J. A. (Editor). 1990. Separation processes in biotechnology. Marcel Dekker Inc. New York, EEUU.
- Goldberg, E. (Editor). 1997. Handbook of downstream processing. Blackie Acadenic & Professional, Cambridge, Reino Unido.
- Ladisch M.R. 2001. Bioseparations Engineering. Principles, Practice and Economics. Wiley Interscience, EEUU.
- Verrall, M. (Editor). 1996. Downstream processing of natural products: a practical handbook. John Wiley & Sons, Chichester, Reino Unido.