

DEGREE CURRICULUM INTRODUCTION TO PROGRAMMING II

Coordination: MARTINEZ RODRIGUEZ, SANTIAGO

Academic year 2023-24

Subject's general information

Subject name	INTRODUCTION TO PROGRAMMING II				
Code	105001				
Semester	2nd Q(SEMESTER) CONTINUED EVALUATION				
Туроlоду	Degree		Course	Character	Modality
	Bachelor's Degree in Computer Engineering		1	COMMON/CORE	Attendance- based
Course number of credits (ECTS)					
Type of activity, credits, and groups	s, Activity type PRALAB TEC			DRIA	
and groupe	Number of credits	3		3	
	Number of groups	2		1	
Coordination	MARTINEZ RODRIGUEZ, SANTIAGO				
Department	COMPUTER ENGINEERING AND DIGITAL DESIGN				
Teaching load distribution between lectures and independent student work	6 ECTS = 25x6 = 150 working hours: 40% -> 60 in-class hours, 60% -> 90 autonomous work hours.				
Important information on data processing	Consult <u>this link</u> for more information.				
Language	Catalan.				
Distribution of credits	Theory: 3 Practices: 3				

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
LOPEZ FERNANDEZ, JESUS MARIA	jesus.lopez@udl.cat	6	Arrange with the teacher. Optionally, by videoconference.
MARTINEZ RODRIGUEZ, SANTIAGO	santi.martinez@udl.cat	3	Arrange with the teacher. Optionally, by videoconference.

Subject's extra information

We assume the students have all the concepts of Introduction to Programming I as we build upon them into two directions: objectoriented programming and recursive design.

Learning objectives

The main learning objectives are:

- To apply the Object Oriented Programming paradigmn to simple problems.
- To use the basic Java file types.
- To design simple recursive algorithms.
- To use the Java standard documentation.
- To use an Intengrated Development Environment.

Competences

Cross-Disciplinary Competences

- EPS1. Capacity to solve problems and prepare and defence arguments inside the area of studies.
- EPS5. Capacity of abstraction and of critical, logical and mathematical thinking.
- EPS9. Capacity for unidisciplinary and multidisciplinary teamwork.
- EPS12. To be motivated for the quality and steady improvement.

Specific Competences / Module of basic training

- **GII-FB3.** Capacity to understand and master the basic concepts of discreet mathematics, logical, algorithmic and computational complexity, and its application to solve engineering problems.
- GII-FB4. Basic knowledge of the use and programming of computers, operating systems, databases and computer programs with applications in engineering.
- **GII-FB5.** Knowledge of the structure, organisation, operation and interconnection of the computer systems, the basics of programming, and its application to solve engineering problems.

Specific Competences / Module of common training in the computer branch

- GII-CRI7. Knowledge, design and efficient use of the types and data structure more suitable for solving a problem.
- **GII-CRI9.** Capacity to know, comprise and evaluate the structure and architecture of computers, as well as the basic components that conform them.

Subject contents

Unit 1. Introduction to Java

- 1.1 From C to Java
- 1.2 The ACM Task Force Library
- 1.3 The main program
- 1.4 Using auxiliary functions

1.5 Arrays in Java

1.6 Strings in Java

Unit 2. Object Oriented Programming

- 2.1 Objects and references
- 2.2 Graphic classes in the ACM library
- 2.3 The String class
- 2.4 Class definition in Java

Unit 3. File processing

- 3.1 Types of files
- 3.2 Sequential text files
- 3.3 Random access binary files
- 3.4 MergeSort

Unit 4. Recursive design

- 4.1 Function calls
- 4.2 Thinking recursively
- 4.3 Recursivity using cursors
- 4.4 Binary search
- 4.5 Multiple recursion

Methodology

Each week students attend 2 hours with a Large Group and 2 hours with a Medium Group. Medium Group sessions are practices.

Large Group: Theory Classes (3 ECTS)

- Theory: Classes supported by class notes.
- Practical application: always working on concrete examples.

Medium Group: Practical Classes (3 ECTS)

- Aimed to the resolution of practical cases by the students (there is a collection of problems).
- Personal tutoring of projects and difficulties.

Autonomous work:

- Software projects are done non-presentially.
- We recommend students to solve the problems in the collection to practice and get feedback from the teaching staff.

Development plan

Week	Large Group Activity	Medium Group Activity	Autonomous Work
1	Presentation + From C to Java	javac and java. Problem 1, 2	Study and problem solving
2	From C to Java (cont.)	Problems 3, 4, 5, 6, 7	Study and problem solving
3	Introduction to OOP	Problems 1, 2	Study and problem solving Project 1
4	Introduction to OOP	Problems 3, 4	Study and problem solving Project 1
5	Introduction to OOP	Problems 5, 6	Study and problem solving Project 1
6	Further OOP	Problems 7, 8	Study and problem solving Project 1
7	Further OOP	Problems 9, 10, 11	Study and problem solving Project 2

Week	Large Group Activity	Medium Group Activity	Autonomous Work		
8	Further OOP	Previous exams	Study and problem solving Project 2		
9	Evaluation				
10	File management Sol. exam. Problem 1 Project 2		Project 2		
11	File management	Problems 2, 3, 4	Study and problem solving Project 2		
12	File management	Problems 5, 6, 7	Study and problem solving Project 3		
13	File management	Problems 8, 9, 10	Study and problem solving Project 3		
14	Recursive design	Problems 1, 2	Study and problem solving Project 3		
15	Recursive design	Previous exams	Study and problem solving Project 3		
16	Evaluation				
17	Evaluation				
18			Study and problem solving		
19	Recovery				

Evaluation

Continuous evaluation

Block	Evaluation Activity	Weight	Minimum Score	Group	Recoverable
EP1	1st Midterm Exam	20%	No	No	Yes (with 2nd midterm exam)
EP2	2nd Midterm Exam	30%	4	No	Yes
PR1	Practice 1	15%	No	Yes (≤ 2)	No
PR2	Practice 2	20%	No	Yes (≤ 2)	No
PR3	Practice 3	15%	No	Yes (≤ 2)	No
To pass the subject the final score must be \geq 5 and the minimum marks indicated must be achieved.					
Final Score = 0.2 · EP1 + 0.3 · EP2 + 0.15 · PR1 + 0.2 · PR2 + 0.15 · PR3					

Remarks:

• 1st midterm exam score is only taken into account if it's greater than 2nd midterm exam (if not, the 2nd midterm exam score is used).

Alternative evaluation (students who waive continuous evaluation):

Students who have the approval to be evaluated by alternative evaluation (see requirements and procedure in the evaluation regulations) will have to do the following activities.

- Exam (80%): It can be improved. A minimum grade of 4 is required. Date of the exam: the date of the realization of the 2nd Midterm Exam, defined by the EPS.
- **Practice** (20%): It cannot be improved. A minimum grade is not required. Delivery date: the date of the realization of the 2nd Midterm Exam, defined by the EPS.
- Improvement of exam (80%): A minimum grade of 4 is required. Date of the exam: the date of the realization of the Improvement Exam, defined by the EPS. The realization of Improvement of Theory exam does not condition the maximum grade achieved in the subject.

Bibliography

Basic

- Class notes (in spanish).
- Eric S. Roberts: The Art & Science of Java: An Introduction to Computer Science, Pearson Education, 2008 (there is a preliminary version available in pdf).
- Eric S. Roberts: Thinking Recuersively with Java, John Wiley & Sons, 2006.

Complementary

- Documentation of the ACM Java Task Force library http://jtf.acm.org/
- Kathy Sierra, Bert Bates: Head First Java, O'Reilly, 2003.
- Jorge A. Villalobos, Rubby Casallas: Fundamentos de Programación. Aprendizaje Activo Basado en Casos. Pearson Pentice-Hall, 2006.