

DEGREE CURRICULUM

INTRODUCTION TO PROGRAMMING I
Coordination: MARTINEZ RODRIGUEZ, SANTIAGO

Academic year 2023-24

INTRODUCTION TO PROGRAMMING I 2023-24

Subject's general information

Subject name INTRODUCTION TO PROGRAMMING I

Code 105000

Semester 1st Q(SEMESTER) CONTINUED EVALUATION

Typology Degree Course Character Modality

Bachelor's Degree in Computer
Engineering

1 COMMON/CORE
Attendance-
based

Course number of
credits (ECTS)

6

Type of activity, credits,
and groups

Activity type PRALAB TEORIA

Number of
credits

3 3

Number of
groups

2 1

Coordination MARTINEZ RODRIGUEZ, SANTIAGO

Department COMPUTER ENGINEERING AND DIGITAL DESIGN

Teaching load
distribution between
lectures and
independent student
work

6 ECTS = 25x6 = 150 working hours:
40% -> 60 in-class hours,
60% -> 90 autonomous work hours.

Important information
on data processing

Consult this link for more information.

Language Catalan.

Distribution of credits Theory: 3
Practices: 3

INTRODUCTION TO PROGRAMMING I 2023-24

https://unidisc.csuc.cat/index.php/s/ljIirDLEOoUr5Rj

Teaching staff E-mail addresses
Credits
taught by
teacher

Office and hour of attention

MARTINEZ RODRIGUEZ, SANTIAGO santi.martinez@udl.cat 3
Arrange with the teacher.
Optionally, by videoconference.

TOMAS GLEYAL, MARC marc.tomas@udl.cat 6
Arrange with the teacher.
Optionally, by videoconference.

Subject's extra information

To address the subject is advisable to show interest in analyzing real problems and developing technological solutions to solve them.
It is also advisable to show analytical skills, logical reasoning and critical capacity.

The knowledge and competencies acquired in this subject will be useful to follow other subjects with contents related with programming
languages, data structure and algorithms.

Learning objectives

The student's learning results are knowing how to apply the techniques of analysis and design of algorithms to implement them in a high-
level programming language.
Specifically, the chosen imperative language is ANSI C/C++ and the problems to be solved are mainly those related with sequences
processing.

In particular, the student's learning results are as follows:

To know how to apply the design and implementation of algorithmic structures to solve the different types of problems.
To know how to apply the design and implementation of data structures to encode information.
To know how to apply the design and implementation of iterative algorithms.
To know how to identify problem types and to apply appropriate algorithmic strategies.
To know how to apply the design and implementation of algorithms to solve complex problems in a structured way.
To know how to apply the design and implementation of solutions using the top-down design technique.
To know how to use a software development environment based on a high-level programming language.

Competences

Cross-Disciplinary Competences

EPS1. Capacity to solve problems and prepare and defence arguments inside the area of studies.
EPS5. Capacity of abstraction and of critical, logical and mathematical thinking.
EPS9. Capacity for unidisciplinary and multidisciplinary teamwork.
EPS12. To be motivated for the quality and steady improvement.

Specific Competences / Module of basic training

GII-FB3. Capacity to understand and master the basic concepts of discreet mathematics, logical, algorithmic and computational
complexity, and its application to solve engineering problems.
GII-FB4. Basic knowledge of the use and programming of computers, operating systems, databases and computer programs with
applications in engineering.
GII-FB5. Knowledge of the structure, organisation, operation and interconnection of the computer systems, the basics of
programming, and its application to solve engineering problems.

Specific Competences / Module of common training in the computer branch

GII-CRI7. Knowledge, design and efficient use of the types and data structure more suitable for solving a problem.
GII-CRI9. Capacity to know, comprise and evaluate the structure and architecture of computers, as well as the basic components
that conform them.

INTRODUCTION TO PROGRAMMING I 2023-24

Subject contents

Introduction: Processes, algorithms and programs.

Unit 1. Basic algorithmic structures

1.1 Constants, variables, basic types and valid expressions
1.2 Assignment, sequential composition, alternative composition and iterative composition
1.3 Programming environment

Unit 2. Design of iterative programs

2.1 Sequential access

Algorithmic schemes for sequence processing
Algorithmic schemes for searching in sequences

2.2 Direct access. Tables

Sequential tables
Direct tables
Multidimensional tables
Classic sorting algorithms

Unit 3. Non-basic data processing

3.1 Procedures and functions
3.2 Parameter passing mechanisms
3.3 Top-down design of algorithms

Methodology

Each week students attend 2 hours with a Large Group and 2 hours with a Medium Group.
Medium Group sessions are practices.

Large Group: Theory and Problems (3 credits)

Theory: classes supported with slides and/or notes.
Part of practical application: always work with problems and programming exercises.

Medium Group: Practices (3 credits)

Tutorials and personalized follow-up for practice groups. The teacher provides a collection of problems. Solutions are developed
along the semester.
Using compilers and editing tools.
Continuous work driven by means of two practices.

Autonomous work:

The practice will be completed with non-contact hours. In the Medium Group sessions the teacher supports the practices which
must be develop by the student throughout the course autonomously.
It is recommended that students solve all problems from the problem collection, in order to practice and get feedback from the
teacher.

Development plan

Week Description Large Group Activity Medium Group Activity Autonomous Work

1
Presentation
Introduction

Introduction to the course.
Introduction: processes, algorithms and programs

Using a programming
environment.

Solve programming exercises.

2
Basic
algorithmic
structures

Unit 1: Constants, variables, basic types,
valid expressions and standard input and output.

Programming exercises. Solve programming exercises.

INTRODUCTION TO PROGRAMMING I 2023-24

3
Basic
algorithmic
structures

Unit 1: Assignment, sequential
composition and alternative composition.

Programming exercises. Solve programming exercises.

4
Basic
algorithmic
structures

Unit 1: Iterative composition. Programming exercises. Solve programming exercises.

5
Design of
iterative
programs

Unit 2: Sequential access.
Practice 1: Overview of the
first practice.

Implement Practice 1
in groups.

6
Design of
iterative
programs

Unit 2: Search in sequences.
Programming exercises.
Support for Practice 1.

Solve programming exercises.
Implement Practice 1
in groups.

7
Design of
iterative
programs

Unit 2: Direct access. Tables.
Programming exercises.
Support for Practice 1.

Solve programming exercises.
Implement Practice 1
in groups.

8
Design of
iterative
programs

Unit 2: Programming exercises with
tables: treatment and search.

Programming exercises.
Support for Practice 1.

Solve programming exercises.
Implement Practice 1
in groups.

9 1st Midterm Exam Delivery of Practice 1.
Study.
Implement Practice 1
in groups.

10
Design of
iterative
programs

Unit 2: Multidimensional tables. Classic sorting algorithms. Solve programming exercises.

11
Non-basic
data
processing

Unit 3: Procedures and Functions. Programming exercises. Solve programming exercises.

12
Non-basic
data
processing

Unit 3: Parameter passing mechanisms.
Practice 2: Overview of the
second practice.

Implement Practice 2
in groups.

13
Non-basic
data
processing

Unit 3: Top-down design of algorithms.
Programming exercises.
Support for Practice 2.

Solve programming exercises.
Implement Practice 2
in groups.

14
Non-basic
data
processing

Unit 3: Programming exercises:
top-down design of algorithms.

Programming exercises.
Support for Practice 2.

Solve programming exercises.
Implement Practice 2
in groups.

15
Non-basic
data
processing

Unit 3: Programming exercises:
top-down design of algorithms.

Programming exercises.
Support for Practice 2.

Solve programming exercises.
Implement Practice 2
in groups.

16 2nd Midterm Exam Delivery of Practice 2.
Study.
Implement Practice 2
in groups.

17 2nd Midterm Exam Study.

18 Study.

19 Improvement Exam Study.

Week Description Large Group Activity Medium Group Activity Autonomous Work

Evaluation

The continuous evaluation of the subject is based on 3 blocks:

Practice Block (25%): It consists of two activities: Practice 1 and Practice 2. They cannot be improved. A minimum grade is not
required.
Theory block 1 (25%): It consists of one activity: 1st Midterm Exam. It can be improved with the theory block 2. A minimum
grade is not required. Date of the exam: the date of the realization of the 1st Midterm Exam, defined by the EPS.
Theory block 2 (50%): It consists of one activity: 2nd Midterm Exam. It can be improved. A minimum grade is not required. Date

INTRODUCTION TO PROGRAMMING I 2023-24

of the exam: the date of the realization of the 2nd Midterm Exam, defined by the EPS.

Improvement of Theory Block 2: It consists of performing a 2nd Midterm Exam again. A minimum grade is not required. Date of the
exam: the date of the realization of the Improvement Exam, defined by the EPS. The realization of Improvement of Theory Block 2 does
not condition the maximum grade achieved in the subject.

Evaluation activities

Acronym Evaluation Activity Weight Minimum Score Group Compulsory Recoverable

EP1 1st Midterm Exam 25% No No No Yes

EP2 2nd Midterm Exam 50% No No No Yes

PR1 Practice 1 10% No Yes (≤ 2) No No

PR2 Practice 2 15% No Yes (≤ 2) No No

To pass the subject the final score must be ≥ 5.

Final Score = 0.25 · EP1 + 0.5 · EP2 + 0.1 · PR1 + 0.15 · PR2

Remarks:

If the grade obtained in the midterm exam EP2 is > = 5, then this grade may act as an improvement of the first midterm exam
EP1.
The student can choose to improve the midterm exam EP2. The improvement exam is a single written exam. The mark obtained
will replace the mark of the two midterm exams of the course.

Alternative evaluation (students who waive continuous evaluation):

Students who have the approval to be evaluated by alternative evaluation (see requirements and procedure in the evaluation regulations)
will have to do the following activities.

Practice 1 (10%): It cannot be improved. A minimum grade is not required. Delivery date: the date of the realization of the 1st
Midterm Exam, defined by the EPS.
Practice 2 (15%): It cannot be improved. A minimum grade is not required. Delivery date: the date of the realization of the 2nd
Midterm Exam, defined by the EPS.
Midterm Exam 2 (75%): It can be improved. A minimum grade is not required. Date of the exam: the date of the realization of the
2nd Midterm Exam, defined by the EPS.
Improvement of Midterm Exam 2 (75%): A minimum grade is not required. Date of the exam: the date of the realization of the
Improvement Exam, defined by the EPS. The realization of Improvement of Midterm Exam 2 does not condition the maximum
grade achieved in the subject.

Bibliography

Algorithms

Teresa Alsinet, Josep Argelich, Sergi Vila: Programació I. Notes del curs. Eines; Edicions i Publicacions de la Universitat de
Lleida.
Jorge Castro, Felipe Cucker, Xavier Messeguer, Albert Rubio, Lluis Solano, Borja Valles: Curs de Programació. McGraw-Hill,
1992.
Gilles Brassard, Paul Bratley: Fundamentos de Algoritmia. Prentice Hall, 1997.
Luis Joyanes: Fundamentos de Programación. Algoritmos, Estructuras de Datos y Objetos. McGraw-Hill, 2003.

ANSI C and C++

Harvey M. Deitel, Paul J. Deitel: Cómo Programar en C/C++. Prentice-Hall, segunda edición, 2002.
Bjarne Stroustrup: Programming: Principles and Practice Using C++. Addison Wesley, 2008.
Luis Joyanes: Programación en C++. McGraw-Hill, 2006.

INTRODUCTION TO PROGRAMMING I 2023-24

