

VIDEO GAME DEVELOPMENT FOR HIGH PERFORMANCE PLATFORMS

Coordination: SEBE FEIXAS, FRANCISCO

Academic year 2023-24

Subjects general information

Subject name	VIDEO GAME DEVELOPMENT FOR HIGH PERFORMANCE PLATFORMS							
Code	103093							
Semester	1st Q(SEMESTER) CONTINUED EVALUATION							
Typology	Degree	Course	Character	Modality				
	Master's Deg Engineering	2	OPTIONAL	Attendance- based				
Course number of credits (ECTS)	6							
Type of activity, credits, and groups	Activity type	PRALAB		TEORIA				
	Number of credits	3		3				
	Number of groups	1		1				
Coordination	SEBE FEIXAS, FRANCISCO							
Department	MATHEMATICS							
Teaching load distribution between lectures and independent student work	6 ECTS correspond to 150 work hours.							
Important information on data processing	Consult this link for more information.							
Language	English							

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
SEBE FEIXAS, FRANCISCO	francesc.sebe@udl.cat	6	Arrange a meeting via e-mail.

Subject's extra information

There exist several platforms that facilitate the development of high complexity video games. These platforms provide and easy way to manage the game graphical elements and program their behaviour through code. They provide tools to position and move objects, manage the interaction among them, add sound and everything needed.

Moreover, in highly realistic games you need to create high quality graphical elements such as characters, vehicles, vegetation and all those elements that are part of the scene. Creation of such material requires specific software.

This course we will employ the Unity 3D game creation platform and the Blender 3D modeling tool.

Learning objectives

- Use the functionalities provided by a video game development tool.
- Implement the logic of a third person 3D videogame.
- Create the graphical material of a video game
- Integrate self-created graphical material in a video game
- Carry out the tasks detailed in a work plan in an autonomous way making use of Internet to complement the information provided.
- Perform a public exposition presenting a project and making use of audiovisual elements

Competences

General competences

• CG4. Capacity to mathematically model, calculate and simulate in technological companies and engineering centres, particularly with regard to research, development and innovation tasks in all fields related to computer engineering

Basic competences

• CB5. Students should possess learning skills that enable them to continue studying in a way that will be largely self-directed or autonomous.

Specific competences

• CE14. Capacities to conceptualise, design, develop and evaluate the person-computer interaction of products, systems, applications and computer services

Subject contents

T. THE OHILY OF VIGCOGAINE ENGINE

- 1.1. Work space
- 1.2. Class hierarchy and objects
- 1.3. Texture and material creation
- 1.4. Script programming
- 1.5. Addition of sound
- 1.6. Model import
- 2. The Blender modeling tool
- 2.1. Work space
- 2.2. Basic modeling operations
- 2.3. Texture addition
- 2.4. Model export

Methodology

The subject will follow a completely practical methodology. Students will develop a project along the course.

The work to be done is detailed in a set of documents which explain the work the student has to do so as to complete de project. These documents will be released regularly along the course.

Development plan

This course we will carry out a project in which we will develop a 3D videogame in which the player will drive an armored vehicle. Students will create the graphical elements, program the vehicles movement, projectile launchment and the interaction among game elements.

The documents detailing the work to do will be released on a weekly basis.

Week	Project tasks
1-3	Unity 3D self training
4-10	Project development using Unity 3D
11-12	Blender self training
13-14	Project models development using Blender
15	Public exposition of the project using audiovisual elements

Evaluation

At the end of the course, studens will make a public presentation of their project. The final score will be computed

nom the following items

Activity	Weight	Minimum mark	In group	Mandatory	Recuperable
Project development using Unity 3D	50%	No	No	No	Yes
Models creation using Blender	30%	No	No	No	Yes
Public exposition	20%	No	No	No	No

Overall mark = 0.5*Unity + 0.3*Blender + 0,2*Expo

The alternative evaluation of the subject requires the submission of the same activities. In this case, the deadline is extended until three labour days before the deadline for academic records.

Bibliography

- Joseph Hocking. Unity in Action. Multiplatform game development in C#. Manning. 2015.
- Oliver Villar. Learning Blender. A hands-on guide to creating 3D animated characters. Addison-Wesley. 2015.
- Home of the Unity Project (https://unity.com/)
- Home of the Blender Project (https://www.blender.org/).