

DATA MINING

Coordination: BEJAR TORRES, RAMON

Academic year 2020-21

Subject's general information

Subject name	DATA MINING							
Code	103089	103089						
Semester	1st Q(SEMESTER) CONTINUED EVALUATION							
Typology	Degree	Course	Character	Modality				
	Master's Degree in Informatics Engineering		2	OPTIONAL	Attendance- based			
Course number of credits (ECTS)	6							
Type of activity, credits, and groups	Activity type	PRALAB		TEORIA				
	Number of credits	3		3				
	Number of groups	1		1				
Coordination	BEJAR TORRES, RAMON							
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING							
Teaching load distribution between lectures and independent student work	30% of the time are lectures (3 hours/week) and 70% is based on autonomous work.							
Important information on data processing	Consult this link for more information.							
Language	English							

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
BEJAR TORRES, RAMON	ramon.bejar@udl.cat	3	
MATEU PIÑOL, CARLOS	carles.mateu@udl.cat	3	

Subject's extra information

To follow this subject, the student should have solid knowledge of structured, object and functional programming in python

Learning objectives

- 1. To know the current tools for Data Cleaning and Data Analyisis
- 2. To know the basics for the development of data-centric procedures using interactive programming tools
- 3. To know how to transform raw data from any source to consistent data for its analysis
- 4. To know how to implement and debug procedures for the transformation of massive data sets using Big Data approaches
- 5. To acquire a sceptic spirit in front of sets of data to incentive the exploratory analysis using computer science tools
- 6. To acquire the tools and knowledge for the descriptive analysis of potentially massive and intractable sets of data
- 7. To know and use the most basic data mining algorithms for discovering relevant features from big data sets
- 8. To know and use basic and advanced algorithsm for machine learning suitable for big data applications
- 9. To know the basics of recommender systems

Competences

University of Lleida strategic competences

• UdL2: Command of a foreign language.

Cross-disciplinary Competences EPS

- **EPS1:** Capacity of planning and organizing the personal work.
- **EPS3:** Capacity to convey information, ideas, problems and solutions to both a specialized and no specialized public.
- **EPS4:** Capacity to conceive, design and implement projects and/or contribute to new solutions, using engineering tools.

• **EPS5:** To be motivated for the quality and steady improvement.

General Competences

- CG4: Capacity to mathematically model, calculate and simulate in technological companies and engineering centres, particularly with regard to research, development and innovation tasks in all fields related to computer engineering.
- **CG8:** Capacity to apply the knowledge acquired for solving problems in new and unfamiliar situations within broader and more multidisciplinary contexts, and to be capable of integrating this knowledge.

Basic Competences

- **CB3:** Students are able to integrate knowledge and handle complexity, and formulate judgments based on information that was incomplete or limited, include reflecting on social and ethical.
- **CB4**: Students can communicate their conclusions -and the knowledge and rationale underpinning these, to specialist and non-specialist audiences clearly and unambiguously.

Degree-specific competences

- **CE1:** Capacity to understand and apply advanced knowledge in high-performance computing and numerical or computational methods to problems of engineering.
- **CE2:** Capacity to apply mathematical, statistical and artificial intelligence methods, design and develop applications, services, intelligent systems and systems based on knowledge.
- **CE4**: Capacity to model, design, define the architecture, implant, manage, operate, administer and keep applications, networks, systems, services and computer contents.
- **CE5**: Capacity to understand and know how to apply the operation and organisation of the Internet, the technologies and new generation network protocols, the models of components, middleware software and services.
- **CE7**: Capacity to design, develop, manage and evaluate mechanisms to certificate and guarantee the security in the treatment and access to the information in a processing or distributed local system.

Subject contents

- 1. Data mining and learning
 - 1. Mining frequent items/item sets and distinct elements
 - 2. Dimensionality reduction
 - 3. Linear and Logistic regression with SGD
 - 4. Naive Bayes classifiers
 - 5. Clustering
 - 6. Recommender systems
- 2. Neural networks and Deep Learning
 - 1. Introduction to neural networks
 - 2. Deep Neural Networks
 - 3. Convolutional Networks
 - 4. Recurrent Neural Networks
- 3. Control: Reinforcement Learning

Methodology

Every week, each student will receive:

- Three hours of class attendance. Lectures are conducted by theoretical explanations accompanied by illustrative examples in the first part, finalizing with practical exercices in the second part. As a support material of the class, we will follow the slides or python notebooks of the course.
- Other support materials to follow the subject in a non-attendance way.

The evaluation is continuous throughout the semester and consists of four different parts:

- Two practices: Extending the bigdata application started at the previous subject "Massive data processing" with neural networks and big data tools.
- Two reports and oral presentations about integrating neural networks and data minning tools in their bigdata application.

Due to the COVID-19 situation some classes will be non-presential, i.e. using videos and/or videoconferences.

Development plan

Weekly:

- 1. Mining frequent items/item sets.
- 2. Mining distinct elements.
- 3. Dimensionality reduction.
- 4. Linear and Logistic regression.
- 5. Naive Bayes classifiers.
- 6. Clustering crisp and probabilistic.
- 7. Recommender systems.
- 8. Work on Data mining projects.
- 9. Work on Big data application.
- 10. Neural Networks.
- 11. Feed forward neural networks.
- 12. Deep Learning.
- 13. Convolutional Neural Networks.
- 14. Convolutional Neural Networks II.
- 15. Recursive Neural Networks.
- 16. Control: Reinforcement Learning.
- 17. Work on Deep Learning projects.
- 18. Work on Big Data Applications.
- 19. Final presentations of big data projects.

Due to the COVID-19 situation some classes will be on-line, i.e., using videos and/or videoconferences.

Evaluation

The assessment for this course is based on continuous evaluation.

Evaluation activities	%	Dates	O/V (1)	I/G (2)
Data mining application (3)	40%	End Sem.	М	G
Data mining application presentation (4)	10%	End Sem.	M	G
Deep learning exercises	25%	Middle Sem.	M	G
Data mining exercises	25%	Middle Sem.	М	G

- (1) Mandatory / Voluntary
- (2) Individual / Group
- (3) There will be a revision of the work performed by each member of the group
- (4) Each member of the group has to participate equally in the presentation and answer questions from the evaluator

Bibliography

- Wes McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Ipython. O'Really, 2012
- Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia. Learning Spark. O'Really, 2015
- Jure Leskovec, Anand Rajaraman & Jeffrey David Ullman. Mining of Massive Datasets. Cambridge
 University Press, 2014 (Find a copy at http://www.mmds.org/) It is also available at our Library, but only
 one user can borrow the book at the same time).