

DEGREE CURRICULUM ENVIRONMENTAL ENGINEERING

Coordination: RAMOS MARTÍN, MARÍA CONCEPCIÓN

Academic year 2021-22

Subject's general information

Subject name	ENVIRONMENTAL ENGINEERING						
Code	102594						
Semester	1st Q(SEMESTER) CONTINUED EVALUATION						
Typology	Degree Cou		Course	Character	Modality		
	Bachelor's Degree in Agricultural and Food Engineering		4	COMPULSO	Attendance- based		
Course number of credits (ECTS)	6						
Type of activity, credits, and groups	Activity type	PRACAMP		PRAULA	TEORIA		
	Number of credits	0.4		2.8	2.8		
	Number of groups	1		1	1		
Coordination	RAMOS MARTÍN, MARÍA CONCEPCIÓN						
Department	ENVIRONMENT AND SOIL SCIENCES						
Teaching load distribution between lectures and independent student work	40% classes 60% personal work						
Important information on data processing	Consult this link for more information.						
Language	Catalan 75% Spanish: 25%						

Distribution of credits

- 1. Introduction. Concept of waste and impact. European environmental legislative policy and principles. General strategy for waste management and treatment. Waste sorting. Waste minimization at source. Regulations that regulate them more directly: "IPPC" Directive, "Nitrates" Directive, "Landfill" Directive, "Sludge" Directive, Royal Decree on "Contaminated Soils". Application of organic by-products and sewage sludge in the soil.1.2c
- 2. Description and characterization of the residues and pollutants that are generated in the agricultural and agri-food activity-0.6c
- 3. Treatment of gaseous emissions: pollutants and particles 0.8c
- 4. Physical and physical-chemical processes of wastewater treatment. Pretreatments: roughing; homogenization and regulation of flows; sedimentation and flotation: type of sedimentation and dynamics of the particles in a liquid medium; filtration; floatation. Coagulation and flocculation.1.c
- 5. Reactor analysis. Biological processes of wastewater treatment. Kinetic and stoichiometric expressions. Environmental and control parameters0.6c
- 6. Fundamentals of process engineering: Mass conservation, continuity equation, reaction kinetics.1c
- 6.1. Microbiomass systems suspended. Suspended Biomass Active sludge Equations of matter balance. Sizing parameters. Oxygen requirements in aerobic systems
- 6.2. Fixed microbiomass systems. Biofilms Definition and characteristics Biofilm Kinetics Reactor kinetics based on biofilm maintenance. Percolating filters, biodisks and submerged filters
- 6.3. Lagoon and green filters
- 7. The anaerobic digestion process 0.2c
- 8. The composting process 0.2c
- 9. Tertiary wastewater treatments 0.2c
- 10. Controlled deposits.0.4c

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
COLLADO SANTOLARIA, NOEMÍ	noemi.collado@udl.cat	,6	
ESTARAN JUSTRIBÓ, CARLOS	carlos.estaran@udl.cat	3,8	
RAMOS MARTÍN, MARÍA CONCEPCIÓN	mariaconcepcion.ramos@udl.cat	1,6	

Learning objectives

The objective of the subject is that the student acquires the knowledge that allows him to defend with technical arguments an option of action (management and treatment) at the time of managing and treating waste of the agricultural and agri-food activity.

Competences

Basic skills

- CB1. That students have demonstrated and understand knowledge in an area of study that starts from the basis of general secondary education, and is usually found at a level that, while supported by advanced textbooks, also includes some aspects that involve knowledge from the forefront of their field of study.
- CB2. That students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and the resolution of problems within their area of study
- CB3. That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include reflection on relevant social, scientific or ethical issues
- CB4 Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- CB5. That students have developed those learning skills necessary to undertake further studies with a high degree of autonomy.

General skills

- CG2. Adequate knowledge of physical problems, technologies, machinery and water and energy supply systems, limits imposed by budgetary factors and construction regulations, and the relationships between facilities or buildings and farms, agri-food industries and spaces related to gardening and landscaping with their social and environmental environment, as well as the need to relate those and that environment with human needs and environmental preservation.
- CG5 Ability to write and sign studies on rural development, environmental impact and waste management of agrifood industries, agricultural and livestock farms, and spaces related to gardening and landscaping.
- CG7 Knowledge in basic, scientific and technological subjects that allow continuous learning, as well as an ability

to adapt to new situations or changing environments.

CG8 Ability to solve problems with creativity, initiative, methodology and critical reasoning.

CG11 Ability to develop their activities, assuming a social, ethical and environmental commitment in tune with the reality of the human and natural environment.

Subject contents

- 1. Introduction. Concept of waste and impact. European environmental legislative policy and principles. General strategy for waste management and treatment. Waste sorting. Waste minimization at source. Regulations that regulate them more directly: "IPPC" Directive, "Nitrates" Directive, "Landfill" Directive, "Sludge" Directive, Royal Decree on "Contaminated Soils". Application of organic by-products and sewage sludge in the soil.1.2c
- 2. Description and characterization of the residues and pollutants that are generated in the agricultural and agri-food activity-0.6c
- 3. Treatment of gaseous emissions: pollutants and particles 0.8c
- 4. Physical and physical-chemical processes of wastewater treatment. Pretreatments: roughing; homogenization and regulation of flows; sedimentation and flotation: type of sedimentation and dynamics of the particles in a liquid medium; filtration; floatation. Coagulation and flocculation.1.c
- 5. Reactor analysis. Biological processes of wastewater treatment. Kinetic and stoichiometric expressions. Environmental and control parameters0.6c
- 6. Fundamentals of process engineering: Mass conservation, continuity equation, reaction kinetics.1c
- 6.1. Microbiomass systems suspended. Suspended Biomass Active sludge Equations of matter balance. Sizing parameters. Oxygen requirements in aerobic systems
- 6.2. Fixed microbiomass systems. Biofilms Definition and characteristics Biofilm Kinetics Reactor kinetics based on biofilm maintenance. Percolating filters, biodisks and submerged filters
 - 6.3. Lagoon and green filters
- 7. The anaerobic digestion process 0.2c
- 8. The composting process 0.2c
- 9. Tertiary wastewater treatments 0.2c
- 10. Controlled deposits.0.4c

Practical activities

Classroom practices (problems and cases) .Resolution of cases and problems on various aspects of the calculation of sizing different treatment processes.

Work: Personal work consisting of describing the quantities and characteristics of waste generated in a real agrifood industry and in proposing with calculations and arguments the most appropriate form of management and treatment.

Visit: Visit to a waste treatment plant or station.

Methodology

Methodological axes of the subject

Type of activity	Description	Student face-to- face activity		Student non-face- to-face activity		Assessment	Total time
		Objetives	Time (h)	Student work	Time (h)	Time(h)	Hours/ECTS
Master class	Master class (Classroom. Large group)	Explanation of the main concepts	38	Study: to know, understand and synthesize knowledge	40	0.5	78.5h/3.14
Problems and study cases	Participatory (Classroom. Large group)	Study case and problem resolution	16	Learn to solve problems and casess	20	0.5	36.5h/1.46
Visit	Visit to a plant	On-site knowledge of process lines	4	Report on each visit	2		6h/0.24
Supervised activities	Student work	Drafting the calculation of a treatment facility		Compose a report	28	1	29h/1.16
Total			58		90	2	150/6

Observations 25 hours of total activity per ECTS credit have been considered.

Development plan

Methodological axes of the subject

Type of activity	Description	Student face-to- face activity		Student non-face- to-face activity		Assessment	Total time
		Objetives	Time (h)	Student work	Time (h)	Time(h)	Hours/ECTS
Master class	Master class (Classroom. Large group)	Explanation of the main concepts	38	Study: to know, understand and synthesize knowledge	40	0.5	78.5h/3.14
Problems and study cases	Participatory (Classroom. Large group)	Study case and problem resolution	16	Learn to solve problems and casess	20	0.5	36.5h/1.46
Visit	Visit to a plant	On-site knowledge of process lines	4	Report on each visit	2		6h/0.24
Supervised activities	Student work	Drafting the calculation of a treatment facility		Compose a report	28	1	29h/1.16
Total			58		90	2	150/6

Observations 25 hours of total activity per ECTS credit have been considered. Master classes in classroom and by videoconference.

Evaluation

Activities

Type of activity	Evauation A	Weight qualification	
	Procedure	Number	(%)
Master classes	Written tests on the theory of the program of the subject	2	35
Problems and study cases	Delivery of written reports on problems and cases	Various	65
Total			100

Observations

The evaluation tests will be carried out in person. In case of impossibility, the appropriate procedure will be enabled. The work deliveries will be carried out preferably through a virtual campus.

For the purposes of the final qualification, in order to pass the subject, it will be necessary to have obtained a score equal to or greater than 5 points as a cumulative result of all evaluable tests and in each one of them.

Bibliography

The bibliography of the technological subjects requires a continuous revision. However, some manuals are cited whose content, despite being written in some cases more than a decade ago, is suitable for a first contact with the subject. At the beginning of the course, and eventually during the development of the subject, teachers will provide a more complete list of bibliographic sources, including portals and internet addresses with sector information.

References

CHYNOWETH, D.P., ISAACSON, R. (1987). Anaerobic digestion of biomass. Elsevier Applied Sciences.

FLOTATS, X (Ed.) (1996). 2n Curs d'Enginyeria Ambiental. Eliminació biològica de nutrients en aigües residuals. Ed. Paperkite.

FLOTATS, X (Ed) (1997). 3r Curs d'Enginyeria Ambiental. Aprofitament energètic de residus orgànics. Servei Publicacions UdL.

HAUG, R.T. 1993. The practical handbook of composting engineering. Lewis Publishers.

HENRY, J.G., HEINKE, G.W. (1989). Environmental Science and Engineering. Prentice Hall Ed. Capítulo 6.

HENZE, M., HARREMOES, P., JANSEN, J.C., ARVIN, E. (1995). Wastewater Treatment. Biological and Chemical Processes. Springer Verlag.

KIELY, G. (1999). Ingeniería Ambiental. Fundamentos, entornos, tecnologías y sistemas de gestión. Mc Graw-Hill.

METCALF & EDDY (1991). Wastewater Engineering. Treatment, Disposal and Reuse. McGraw-Hill, Civil Engineering Series.

RAMALHO, R.S. (1991). Tratamiento de Aguas Residuales. Ed. Reverté, S.A.

TCHOBANOGLOUS, G., THEISEN, H., VIGIL, S.A. (1994). Gestión Integral de Residuos Sólidos. Mc Graw-Hill. Capítulos 11, 16 y 17.

WHEATLEY, A. (1991). Anaerobic Digestion: a Waste Treatment Technology. Elsevier Applied Science.