

DEGREE CURRICULUM PROJECT METHODOLOGY

Coordination: BAQUERO ARMANS, GRAU

Academic year 2022-23

Subject's general information

Subject name	PROJECT METHODOLOGY					
Code	102500					
Semester	1st Q(SEMESTER) CONTINUED EVALUATION					
Туроlоду	Degree		Course	Character		Modality
	Bachelor's degree in Industrial Organization and Logistics Engineering		4	COMPULSORY		Attendance- based
Course number of credits (ECTS)	6					
Type of activity, credits, and groups	Activity type	PRAULA		TEORIA		
	Number of credits	3		3		
	Number of groups	1			1	
Coordination	BAQUERO ARMANS, GRAU					
Department	COMPUTER SCI	ENCE AND INDUST	RIAL ENG	INEE	RING	
Teaching load distribution between lectures and independent student work	Lectures activities: 60 hours Independent study work: 90 hours					
Important information on data processing	Consult <u>this link</u> for more information.					
Language	Catalan					
Distribution of credits	3 Theory 3 Practice					

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
PARE BUSTO, MARC	marc.pare@udl.cat	3	
RAVENTOS RICO, ALBERT	albert.raventos@udl.cat	3	

Learning objectives

Learning results:

-The students understand the reality of the profession of engineer, the competences and responsibilities in the development of the profession.

-The students understand the definition, structure and operation of technical offices

-The students start in the organization, planning, execution and management of projects.

-The students acquire knowledge about the different types of technical work that the engineer can perform and the methodology to carry it out.

-The students acquire knowledge about the different criteria for the elaboration of technical documents.

-The students acquire knowledge about the legislative and regulatory framework that affects the development of the profession, especially its own specialty.

-The students acquire notions about the work management tasks in the aspects of planning and management.

-The students write and interpret engineering technical documents: reports, studies and technical reports, valuations and engineering projects.

-The students design, calculate and graphically represent facilities, infrastructures and industrial buildings.

-The students perform and interpret engineering graphic documentation, diagrams and plans in general.

-The students applies computer science tools for the production of graphic documents and CAD technologies.

Competences

Basic

B02 That students know how to apply their knowledge to their work or vocation in a professional manner and possess the skills that are usually demonstrated through the elaboration and defense of arguments and the resolution of problems within their area of study.

B03 That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.

B04 That students can transmit information, ideas, problems and solutions to a specialized and non-specialized public.

B05 That students have developed those learning skills necessary to undertake further studies with a high degree

of autonomy.

General competences

CG1. To conceptualize the drafting, signing and development of projects in the field of engineering in industrial organization, which have as their object, according to the specific technology training, the construction, reform, repair, conservation, demolition, manufacture, installation, assembly or exploitation of : structures, mechanical equipment, energy facilities, electrical and electronic installations, industrial facilities and processes and manufacturing and automation processes.

CG2. To direct the activities subject of the engineering projects described in the previous section.

CG4. To solve problems with initiative, make decisions, creativity, critical reasoning and to communicate and transmit knowledge, skills and abilities in the field of Industrial Organization Engineering.

CG5. To carry out measurements, calculations, valuations, appraisals, surveys, studies, reports, work plans and other analogous work.

CG6. To implement specifications, regulations and mandatory rules.

CG7. To analyze and assess the social and environmental impact of technical solutions.

CG10. To work in a multilingual and multidisciplinary environment.

CG11. To understand and apply the necessary legislation in the exercise of the profession of Industrial Organization Engineer

Specific competences

CE18. To recognize the organizational structure and functions of a Project Office.

Transversal

CT3. To iImplement new technologies and technologies of information and communication.

CT4. To apply basic knowledge of entrepreneurship and professional environments.

CT5. To apply essential notions of scientific thinking.

Subject contents

BLOCK 1

Topic 1 - Project planning

- Project Strategy.
- Project Act.
- Project Scope.
- Schedule management.
- Cost management..
- Resources management.
- Procurement management.
- Quality management.
- Risk management.

Topic 2 - Executing, monitoring and controlling the project.

Topic 3 - Close project.

BLOCK 2

Topic 1 – Technical office organisation

- Agents and powers
- Relationships and monitoring
- Management tools and responsibles
- Case study

Topic 2 - Contents of the project

- Descriptions and substantiation
- Calculations and valuations
- Plans and diagrams
- Measurements and budget
- Annexes

Topic 3 – Documentation organization

- Project documentation
- Technical and graphic documentation
- Quality documentation

Methodology

- Master classes for content exposure.

- Preparation and implementation of activities and practical exercises, individually and in groups, evaluable for the final grade.

- Learning based on the case method, elaborating practical cases where it is necessary to apply theoretical knowledge.

- Autonomous study work, carrying out individual and group activities, searching for information and developing the tasks of the practical cases.

- Presentation of the results of the practical exercises through the delivery of written documentation.

- Face-to-face sessions of exhibition and defense of the work carried out.

All sessions will be face-to-face.

Development plan

Week	Monday date	Topics	Lecturer	Observations
1	12/09/2022	Intro / 1.1	Albert	
2	19/09/2022	1.1	Albert	
3	26/09/2022	1.1	Albert	
4	03/10/2022	1.1	Albert	
5	10/10/2022	1.1	Albert	Wednesday 12/10 holiday
6	17/10/2022	1.1 / 1.2	Albert	

Week	Monday date	Topics	Lecturer	Observations
7	24/10/2022	1.2 / 1.3	Albert	
8	31/10/2022	1.3/2.1	Albert / Marc	
9	07/11/2022	-	Marc	Wednesday 9/11 from 17.30 to 19.30h 1sr partial exam
10	14/11/2022	2.1	Marc	
11	21/11/2022	2.1 / 2.2	Marc	
12	28/11/2022	2.2	Marc	
13	05/12/2022	2.2	Marc	Wednesday 7/12 holiday
14	12/12/2022	2.3	Marc	
15	19/12/2022	2.3	Marc	
16	09/01/2023	-		Exams week
17	16/01/2023	-		Wednesday 18/01 from 15.00 to 17.00h 2nd partial exam
18	23/01/2023	-		Exams week
19	30/01/2023	-		Wednesday 1/02 from 17.30 to 19.30h recovery exam

Evaluation

A continuous assessment model will be applied in order to weigh the follow-up activities and the exams, with the following scale:

- 30% first partial exam
- 20% follow-up exercises (block 1)
- 30% second partial exam
- 20% follow-up exercises (block 2)

In order to pass the course it is necessary to have taken both partial exams.

The students who do not opt for continuous evaluation must pass the recovery exam, and submit a paper for each block, with the following scales:

- 30% paper for block 1
- 30% paper for block 2
- 40% final exam

Bibliography

Basic:

Project Management Institute. PMBOK Guide.

Other resources:

Regulations and industrial regulations.