

# DEGREE CURRICULUM COMMUNICATION NETWORKS

Coordination: MARTINEZ RODRIGUEZ, SANTIAGO

Academic year 2022-23

# Subject's general information

| Subject name                                                                         | COMMUNICATION NETWORKS                                                                               |       |        |            |        |                      |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------|--------|------------|--------|----------------------|--|--|--|
| Code                                                                                 | 102379                                                                                               |       |        |            |        |                      |  |  |  |
| Semester                                                                             | 2nd Q(SEMESTER) CONTINUED EVALUATION                                                                 |       |        |            |        |                      |  |  |  |
| Туроlоду                                                                             | Degree                                                                                               |       | Course | Character  |        | Modality             |  |  |  |
|                                                                                      | Bachelor's degree in Digital<br>Interaction and Computing<br>Techniques                              |       | 2      | COMPULSORY |        | Attendance-<br>based |  |  |  |
| Course number of credits (ECTS)                                                      | 6                                                                                                    |       |        |            |        |                      |  |  |  |
| Type of activity, credits, and groups                                                | Activity<br>type                                                                                     | PRALA | PRALAB |            | TEORIA |                      |  |  |  |
|                                                                                      | Number of credits                                                                                    | 3     |        | 3          |        |                      |  |  |  |
|                                                                                      | Number of<br>groups                                                                                  | 1     |        | 1          |        |                      |  |  |  |
| Coordination                                                                         | MARTINEZ RODRIGUEZ, SANTIAGO                                                                         |       |        |            |        |                      |  |  |  |
| Department                                                                           | COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING                                                          |       |        |            |        |                      |  |  |  |
| Teaching load<br>distribution between<br>lectures and<br>independent student<br>work | 6 ECTS = 25x6 = 150 working hours:<br>40% -> 60 in-class hours,<br>60% -> 90 independent work hours. |       |        |            |        |                      |  |  |  |
| Important information on data processing                                             | Consult this link for more information.                                                              |       |        |            |        |                      |  |  |  |
| Language                                                                             | Catalan.                                                                                             |       |        |            |        |                      |  |  |  |
| Distribution of credits                                                              | Theory: 3<br>Practices: 3                                                                            |       |        |            |        |                      |  |  |  |

| Teaching staff                  |                        | Credits<br>taught by<br>teacher | Office and hour of attention                                 |
|---------------------------------|------------------------|---------------------------------|--------------------------------------------------------------|
| MARTINEZ RODRIGUEZ,<br>SANTIAGO | santi.martinez@udl.cat | 6                               | Arrange with the teacher.<br>Optionally, by videoconference. |

# Subject's extra information

Office hours need to be appointed beforehand by e-mail with the teacher.

To properly follow this course, previous skills on programming and operating systems are recommended.

# Learning objectives

- Knowledge of current standard mechanisms and institutions.
- Learning data link protocols basics, as well as their weaknesses and capacities.
- Designing a physical and data-link level solution for a given scenario.
- Learning current network level protocol basics.
- Understanding network level protocol weaknesses and limitations and their solutions.
- Designing and addressing and routing solution for a given and basic scenario.
- Knowledge and ability to optimize transport protocols.
- Studying current data encoding and compression mechanisms.
- Knowledge and understanding encapsulation and abstraction models between network levels.
- Knowledge and understanding physical level data transmission mechanisms.
- Designing transport level protocols.
- Understanding performance factors and congestion control procedures.
- Knowledge and understanding of application level protocols, particularly those with multimedia containers.

## Competences

#### **Basic Competences**

• **B03.** That students have the ability to gather and interpret relevant data (usually within their area of study) to make judgments that include a reflection on relevant social, scientific or ethical issues.

#### **Transversal Competences**

• CT3. Acquire training in the use of new technologies and information and communication technologies.

#### **General Competences**

- **CG2.** Design, develop, evaluate and guarantee the accessibility, ergonomics, usability and security of computer systems.
- CG3. Use adequate hardware and software platforms to develop and execute interactive digital applications.

#### **Specific Competences**

- CE7. Know, manage and maintain systems, services and interactive applications.
- **CE12.** Knowledge and ability to apply the characteristics, functionalities and structure of computer networks and internet, and design and implement interactive applications based on them.

## Subject contents

Standards and organizations.

OSI and TCP/IP models.

Physical level: Introduction to data transmission.

Data-link level:

- Medium access.
- Direct access networks: Ethernet (802.3), Wireless (802.11).
- Switching.

Network level:

- IP protocol.
- IP addressing.
- Basic routing: static and vector-distance.
- Advanced routing: link-state.

Transport level:

- End-to-end protocols: TCP and UDP.
- Another end-to-end protocols.

Congestion control and resource management.

Application level: Application protocols.

## Methodology

Each week students attend 2 hours with a Large Group and 2 hours with a Medium Group. Medium Group sessions are practices.

The course is structured following the layered model of ISO/OSI network abstracion, we study the different technologies and network protocols starting with the physical level, and progressively increasing the ISO/OSI level, and hence, abstraction with respect to the physical transportation of data.

Despite using the OSI theoretical model, the protocol suite studied is the constituent of the Internet, TCP/IP.

Also in a series of laboratory sessions, students will consolidate this knowledge as well as gaining a more applied view of networks.

## Development plan

Week 1. Standards and organizations.

- Week 2. OSI and TCP/IP models.
- Week 3. Physical level: Introduction to data transmission.
- Week 4. Physical level: Introduction to data transmission.

- Week 5. Data-link level.
- Week 6. Data-link level.
- Week 7. Network level.
- Week 8. Network level.
- Week 9. Midterm exams 1.
- Week 10. Transport level.
- Week 11. Transport level.
- Week 12. Congestion.
- Week 13. Congestion.
- Week 14. Presentation.
- Week 15. Application protocols.
- Week 16. Midterm exams 2.
- Week 17. Midterm exams 2.
- Week 18. Tutorial week.
- Week 19. Improvement exams.

### **Evaluation**

| Acronym | Evaluation Activity | Weight | Minimum Score | Group | Compulsory | Recoverable |
|---------|---------------------|--------|---------------|-------|------------|-------------|
| P1      | Project 1           | 20%    | No            | Yes   | No         | No          |
| P2      | Project 2           | 20%    | No            | Yes   | No         | No          |
| P3      | Project 3           | 20%    | No            | Yes   | No         | No          |
| E1      | 1st Midterm Exam    | 20%    | No            | No    | No         | Yes         |
| E2      | 2nd Midterm Exam    | 20%    | No            | No    | No         | Yes         |

Final score = 0,2 · P1 + 0,2 · P2 + 0,2 · P3 + 0,2 · E1 + 0,2 · E2

The course is passed with a qualification larger or equal than 5.

The midterm exams can be recovered during the improvement week.

# Bibliography

- Larry L. Peterson, Bruce S. Davie: Computer Networks: A Systems Approach, Fifth Edition. Morgan Kaufmann, 2011.
- Andrew S. Tanenbaum, David J. Wetherall: Computer Networks (5th Edition). Pearson, 2010.
- James F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach (5th Edition). Addison-

Wesley, 2010.

- W. Richard Stevens: TCP/IP Illustrated, Volumes 1 & 2. Addison-Wesley.
- Jeffrey S. Beasley: Networking. Pearson, 2008.