

DEGREE CURRICULUM
 DISCRETE MATHEMATICS

Coordination: DALFO SIMO, CRISTINA
Academic year 2022-23

DISCRETE MATHEMATICS 2022-23

Subject's general information

Subject name	DISCRETE MATHEMATICS				
Code	102373				
Semester	1st Q(SEMESTER) CONTINUED EVALUATION				
Typology	Degree		Course	Character	Modality
	Bachelor's degree in Digital Interaction and Computing Techniques		2	COMMON/CORE	Attendance-based
Course number of credits (ECTS)	6				
Type of activity, credits, and groups	Activity type	PRAULA		TEORIA	
	Number of credits	3		3	
	Number of groups	1		1	
Coordination	DALFO SIMO, CRISTINA				
Department	MATHEMATICS				
Teaching load distribution between lectures and independent student work	6 ECTS $=25 \times 6=150$ hours of work				
Important information on data processing	Consult this link for more information.				
Language	Catalan				
Distribution of credits	3 credits of theory and 3 of exercises.				

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
DALFO SIMO, CRISTINA	cristina.dalfo@udl.cat	6	

Subject's extra information

Discrete Mathematics studies the so-called discrete objects, which are formed by a finite (or numerable) number of elements. In mathematics, the discrete term, as opposed to continuing, means that it is composed of elements "well separated from each other". Among the discrete objects, we find the integers and the discrete algebraic structures, as well as combinatorics and graphs, which we will present in this subject. It must be said that there are many other issues of Discrete Mathematics, such as codes, cryptography and finite state machines, which appear in other subjects of the Degree in Techniques of Digital Interaction and Computation. The reason for their inclusion in these studies lies in the many applications they have in Computing, since computers store information and manipulated it in a discrete way ("through sequences of zeros and ones"). The program that we present to you consists of an approach to the Theory of Graphs and an introduction to the Combinatorial Enumeration.
Prerequisites: Mathematics of Computing (modular arithmetic and elementary group theory).

Learning objectives

- Modeling problems through graphs.
- Recognize the basic elements of a graph and its different representations.
- Determine if two small order graphs are or are not isomorphic.
- Distinguish between DFS and BFS strategies.
- Determine if a graph is connected.
- Know and apply different connectivity parameters.
- Calculate the metrics related to the distance.
- Use algorithms to calculate distances in weighted and unweighted graphs.
- Know different routes in a graph.
- Demonstrate if a graph is Eulerian and, if so, find a Eulerian circuit.
- Analyze the Hamiltonian character of a graph.
- Identify the trees and list their basic properties
- Recognize in what situations the (optimal) graph coloring is required.
- Evaluate the efficiency of the different basic algorithms on graphs.
- Know the basic principles of combinatorial enumeration.
- Modeling some counting problems to solve with combinational techniques.
- Know the permutations, combinations, and variations.
- Apply the combinatorial formulas correctly.
- Know the principle of inclusion-exclusion.
- Recognize recurrence relationships.
- Resolve the recurrence equations of order two with constant coefficients.

Competences

Strategic Skills:

- Acquire essential notions of scientific thought.

Transversal Skills:

- Ability to solve problems and elaborate and defend arguments within their area of study.
- Capacity for abstraction and critical, logical, and mathematical reasoning.

Specific Skills that Students must Acquire in the Degree in Techniques of Digital Interaction and Computation:

- Ability to understand and master the basic concepts of discrete mathematics, logic, algorithmic and computational complexity, and its application to solve problems related to computer science.
- Knowledge of basic subjects and technologies that enable them to learn and develop new methods and techniques that give them great versatility to adapt to new situations.

Subject contents

I. INTRODUCTION TO ENUMERATIVE COMBINATORICS

1. Basic combinatorial principles and objects.
1.0 Introduction.
1.1 Basic enumeration principles.
1.2 Sorted selections: permutations.
1.3 Unordered selections: combinations.
1.4 Binomial and multinomial coefficients.
1.5 Principle of inclusion-exclusion.
2. Recurrence relations.
2.0 Introduction.
2.1 Basic terminology on recurrence relationships.
2.2 Methods of resolution of recurrence relations.
2.3 Resolution of linear recurrences of order two with constant coefficients.
II. THE THEORY OF GRAPHS
3. Graphs: basic concepts.
1.0 Graphs as mathematical models: historical examples and current applications.
1.1 Definition of a graph.
1.2 Degree of a vertex. Handshake Lemma.
1.3 Representation of a graph.
1.4 Isomorphism of graphs.

DISCRETE MATHEMATICS 2022-23

1.5 Important examples of graphs
1.6 Operations with graphs.
1.7 Directed graphs.
2. Connection and distances
2.1 Routes in a graph.
2.2 Connected graphs: Definition and properties. DFS algorithm.
2.3 Connectivity.
2.4 Distances in a graph. Algorithm BFS.
2.5 Trees. The problem of the minimum connector.
3. Hamiltonian and Eulerian graphs.
3.1 Eulerian graphs: Definition and characterization.
3.2 Construction of an Eulerian circuit: Hierholzer algorithm and Fleury algorithm.
3.3 Hamiltonian graphs: Definition, necessary conditions, and sufficient conditions.
4. Trees

Methodology

Theory lessons (3 credits):
Theoretical part: classes supported by notes and material available on the virtual campus.
Part of practical exercises: Always working with examples and exercises. There is a collection of problems, of which solutions the students are provided throughout the semester.

Problem lessons (3 credits):
Guided classes and problem-solving tracking.

Autonomous work:
It is recommended that the students solve on their own the problems of the collection of problems that are not solved in class, in order to complete theoretical and practical knowledge.

Development plan

| Dates (weeks) | Description | Activity Theory Group | Activity Exercises Group |
| :--- | :--- | :--- | :--- | Seli-Study

Evaluation

- Control Exam 1 (C1): 10\%
- Partial Exam 1 (P1): 40\%.
- Control Exam 2 (C2): 10\%.
- Partial Exam 2 (P2): 40\%.

Final Mark $=0.1 \cdot \mathrm{C} 1+0.4 \cdot \mathrm{P} 1+0.1 \cdot \mathrm{C} 2+0.4 \cdot \mathrm{P} 2$

To compute the final mark, there is no minimum mark for the control exams, the partial exams have 2.5 as a minimum mark (over 10).
Partial Exams 1 and 2 (80%) can be recovered with the resit exam.

It is mandatory to carry out both partial exams (it is necessary to present and develop them).

Bibliography

Material in the Virtual Campus:

Material of Combinatorics:

- Joan Gimbert, Ramiro Moreno, Magda Valls, Notes sobre Combinatòria, Quadern EUP núm. 36, 2002.

Material of Graphs:

- Joan Gimbert, Ramiro Moreno, Josep Maria Ribó, Magda Valls, Apropament a la Teoria de Grafs i als seus Algorismes, Edicions de la UdL, 1998.

Exams Compilation:

- Joan Gimbert, Nacho López, Ramiro Moreno, Magda Valls, Recull d'Exàmens de Matemàtica Discreta.

DISCRETE MATHEMATICS 2022-23

Basic Bibliografhy

THEORY BOOKS (with exercises):

- Ian Anderson, Introducción a la Combinatoria. Vicens Vives, 1993
- Josep Maria Brunat, Combinatòria i Teoria de Grafs. Edicions UPC, 1996

Norman Biggs, Matemàtica Discreta. Vicens Vives, 1993
BOOKS OF SOLVED EXERCISES:

- Nina Bijedi, Joan Gimbert, Josep Maria Miret, Magda Valls, Elements of Discrete Mathematical Structures for Computer Science, Univerzitetska knjiga Mostar and Edicions de la UdL, 2007.
Félix García, Gregorio Hernández, Antonio Nevot, Problemas resueltos de Matemática Discreta. Thomson, 2003.
- Joan Trias, Matemàtica Discreta. Problemes resolts. Edicions UPC, 2001.

