

DEGREE CURRICULUM THERMAL ENGINEERING II

Academic year 2014-15

Subject's general information

Subject name	THERMAL ENGINEERING II
Code	102301
Semester	First quarter
Туроlоду	Compulsory
ECTS credits	10.2
Theoretical credits	3
Practical credits	7.2
Office and hour of attention	Set up with the teacher
Department	Informàtica i Enginyeria Industrial
Modality	Presencial
Important information on data processing	Consult this link for more information.
Language	Catalan 100%
Degree	Degree in Mechanical Engineering
Distribution of credits	Dr. Ingrid Martorell Boada (3) Laia Miró Torán (4) Aran Solé Garrigós (3.7)
Office and hour of attention	Set up with the teacher
E-mail addresses	imartore@diei.udl.cat Imiro@diei.udl.cat aran.sole@diei.udl.cat

Dr. Ingrid Martorell Boada (RESPONSIBLE TEACHER) Laia Miró Torán Aran Solé Garrigós

Learning objectives

Problem resolution: Ability to solve problems numerically and be able to elaborate and discuss the obtained results using the critical thinking.

To be able to analize from a critical point of view and be able to sintezise the concepts learnt

To learn the thermal energy concepts: The student has to show that is able to learn theoretical and practical knowledgments.

To Learn knowledge associate with fluidomechanics - Solve problems - Analize problems and their solutions critically - Search data to solve problems

Competences

EPS1. Capacity to solve problems and prepare and defence arguments inside the area of studies.

EPS6. Capacity of analysis and synthesis.

GEM21. Applied knowledge of thermal engineering.

GEM24. Applied knowledge of the basics of fluidomechanic machinery.

Subject contents

- First. Properties of pure substances
- 01.01. Pure substances
- 02.01. Phases of a pure substance
- 03.01. Change processes do a pure substance
- 01.04. Property diagrams for phase change processes
- 05.01. Property tables
- 01.06. Ideal gas equation of state
- 07.01. The compressibility factor a measure of the deviation from ideal gas
- 01.08. Specific heat
- 09.01. Internal energy, enthalpy and specific heat of ideal gases
- 1.10. Internal energy, enthalpy and specific heat of solids and liquids
- 1.11. Problem properties pure substances
- Two. First law of thermodynamics
- 02.01. The first principle of thermodynamics

- 02.02. Energy balance for closed systems
- 2-3. Energy balance for steady state systems
- 02.04. Some stationary equipment engineering
- 05.02. Energy balance for non-steady state processes
- 02.06. Problems first principle of thermodynamics
- Three. Second law of thermodynamics
- 03.01. Introduction to the second law of thermodynamics
- 03.02. Thermal energy storage
- 03.03. Heat engines
- 03.04. Efficiencies in energy conversion
- 03.05. Refrigerators and heat pumps
- 06.03. The Carnot cycle
- 07.03. The Carnot heat engine
- 08.03. The refrigerator and heat pump Carnot
- 09.03. Problems of the second law of thermodynamics
- Four. Entropy
- 01.04. Entropy
- 02.04. The principle of entropy increase
- 03.04. Entropy change of pure substances
- 04.04. Isentropic processes
- 04.05. Entropy change of liquids and solids
- 04.06. Entropy change of ideal gases
- 07.04. Isentropic efficiency of steady state devices
- 08.04. Balance of entropy
- 09.04. Problems entropy
- 5. Gas power cycles
- 05.01. Cosideracions basic analysis of power cycles
- 05.02. Carnot cycle and its value engineering

03.05. Standard air assumptions

04.05. Reciprocal motor

- 05.05. The Otto cycle: the ideal cycle for spark-ignition engines
- 06.05. Diesel Cycle: The Ideal Cycle for Compression-ignition engines
- 07.05. Stirling and Ericsson cycles
- 08.05. Brayton cycle: the ideal cycle for gas turbines
- 05.09. Problems cycle gas power
- 6. Steam power cycles and combined cycles
 - 01.06. Carnot cycle steam
 - 02.06. The Rankine cycle: the ideal cycle steam power cycles
 - 06.03. Deviations of actual vapor power cycles ideals

Methodology

The methodology of the course will be divided into:

1.-Theoretical sessions where the teacher will present the theory necessary for the acquisition of knowledge.

2.-Problems sessions where teacher will present some examples but basically students will play an active role in the learning process working in small groups or individually.

3.-practical laboratory sessions where students work in group.

Development plan

El pla de desenvolupament seguirà l'ordre dels continguts i intercal·larà una sessió de teoria amb una altra de problemes.

Week	Day	Content	Teacher
1	15 SEP	Course presentation	Ingrid/Laia/Aran
	19 SEP	Problems	Aran
2	22 SEP	Theory	Ingrid
	26 SEP	HOLIDAY	
3	29 SEP	HOLIDAY	
	3 ОСТ	Problems	Aran
4	6 OCT	Theory	Ingrid
	10 OCT	Problems	Aran
5	13 OCT	Theory	Ingrid
	17 OCT	Problems	Laia

6	20 OCT	Theory	Ingrid
	24 OCT	Problemes	Aran
7	27 OCT	Theory	Ingrid
	31OCT	Problems (Aran)	
8	3 NOV	Theory	Ingrid
	7 NOV	Problems	Aran
9	10-14 NOV	FIRST PARTIAL	

Week	Day	Content	Teacher
10	17 NOV	Theory	Ingrid
	21 NOV	Laboratory	Laia/Aran
11	24 NOV	Theory	Ingrid
	28 NOV	Laboratory	Laia/Aran
12	1 DES	Theory	Ingrid
	5 DES	Problems (Laia)	
13	8 DES	HOLIDAY	
	12 DES	Problems	Laia
14	15 DES	Theory	Ingrid
	19 DES	Problems	Laia
	20 DES 6 JAN	CHRISTMAS	
15	9 JAN	Problems	Laia
16/17	12-23 JAN	SECOND PARTIAL	

Evaluation

EVALUATION ACTIVITY 1: FIRST PARTIAL

-30%

-Score \geq 3 to average with the other scores of the course

-With a score below 3.0 the student cannot do the second partial and goes directly to the final exam.

EVALUATION ACTIVITY 2: SECOND PARTIAL

-50%

 $-Score \ge 3$ to average with the other scores of the course.

EVALUATION ACTIVITY 3: LAB ACTIVITIES

-20%

-in group

-Score \geq 4 (all practices average)

Bibliography

-Yunus A. Çengel, Michael A. Boles "Thermodynamics, an engineering approach", International Edition, Fourth Edition, Mc Graw Hill, ISBN: 0-07-238332-1