

# DEGREE CURRICULUM SYSTEMS INTEGRATION III

Coordination: TRESANCHEZ RIBES, MARCEL

Academic year 2023-24

# Subject's general information

| Subject name                             | SYSTEMS INTEGRATION III                                                                                             |        |          |                      |          |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|----------|----------------------|----------|--|--|--|
| Code                                     | 102132                                                                                                              |        |          |                      |          |  |  |  |
| Semester                                 | 2nd Q(SEMESTER) CONTINUED EVALUATION                                                                                |        |          |                      |          |  |  |  |
| Typology                                 | Degree                                                                                                              |        |          | Character            | Modality |  |  |  |
|                                          | Bachelor's De<br>and Industrial                                                                                     | 4      | OPTIONAL | Attendance-<br>based |          |  |  |  |
| Course number of credits (ECTS)          | 6                                                                                                                   |        |          |                      |          |  |  |  |
| Type of activity, credits, and groups    | Activity type                                                                                                       | PRAULA |          | TEORIA               |          |  |  |  |
| <b>3 p</b>                               | Number of credits                                                                                                   | 3      |          | 3                    |          |  |  |  |
|                                          | Number of groups                                                                                                    | 1      |          | 1                    |          |  |  |  |
| Coordination                             | TRESANCHEZ RIBES, MARCEL                                                                                            |        |          |                      |          |  |  |  |
| Department                               | INDUSTRIAL AND BUILDING ENGINEERING                                                                                 |        |          |                      |          |  |  |  |
| Important information on data processing | Consult this link for more information.                                                                             |        |          |                      |          |  |  |  |
| Language                                 | Speaking: As required (Catalan, Spanish or English).  Materials and resources: English.  Student workload: English. |        |          |                      |          |  |  |  |
| Distribution of credits                  | Theoretical sessions: 1 ECTS Experimental training sessions: 2 ECTS Practical sessions: 3 ECTS                      |        |          |                      |          |  |  |  |

| Teaching staff           | E-mail addresses          | Credits taught by teacher | Office and hour of attention |
|--------------------------|---------------------------|---------------------------|------------------------------|
| TRESANCHEZ RIBES, MARCEL | marcel.tresanchez@udl.cat | 7,2                       |                              |

## Subject's extra information

This course is part of the elective module in Systems Integration of the Degree in Automation and Industrial Electronic Engineering offered by the Polytechnic School at the University of Lleida.

A **Joint Project** is developed together with other subjects of the Systems Integration module:

- SYSTEMS INTEGRATION II \*
- SYSTEMS INTEGRATION III \*

(\*) These two subjects must be enrolled simultaneously because they work together on a Joint Project. The only exception is if any of them is approved.

Each subject focuses on the corresponding aspects of project development. In the case of this subject, electronic design, manufacturing and assembly of embedded systems. The aim of this Joint Project is to bring the students with what would be a real-world project of embedded electronic systems development and at the same time, bring into a real context the aspects studied in previous courses.

It is **COMPULSORY** to have completed or be attending the previous subject related to this elective module, SYSTEMS INTEGRATION I and II.

It is **COMPULSORY** that the students bring the following elements of individual protection (EPI) to the practices at the laboratory.

- Blue laboratory gown from UdL (unisex)
- Protection glasses
- · Mechanical protection gloves

They can be purchased through the shop Údels of the UdL:

C/ Jaume II, 67 baixos Centre the Cultures i Cooperació Transfronterera

#### http://www.publicacions.udl.cat/

The use of other elements of protection (for example caps, masks, gloves of chemical or electrical risk, etc.) will depend on the type of practice to be done. In that case, the teacher will inform of the necessity of specific EPI.

Not bringing the EPI's described or not fulfilling the norms of general security that are detailed below imply that the student cannot access to the laboratories or have to go out of them. The no realization of the practices for this reason imply the **consequences in the evaluation** of the subject that are described in this course guide.

#### **GENERAL NORMS OF SECURITY IN LABORATORY PRACTICES**

- Keep the place of realization of the practices clean and tidy. The table of work has to be free from backpacks, folders, coats...
- No short trousers or short skirts are allowed in the laboratory.
- Closed and covered footwear is compulsory in the laboratory.
- Long hair needs to be tied.

- Keep the laboratory gown laced in order to be protected from spills of chemicals.
- Bangles, pendants or wide sleeves are not allowed as they can be trapped.
- Avoid the use of contact lenses, since the effect of the chemical products is much bigger if they enter between the contact lenses and the cornea. Protection over-glasses can be purchased.
- No food or drink is allowed in the laboratory.
- It is forbidden to smoke in the laboratories.
- Wash your hands whenever you have contact with a chemical product and before going out of the laboratory.
- Follow the instructions of the teacher and of the laboratory technicians and ask for any doubt on security.

For further information, you can check the following document of the *Servei de Prevenció de Riscos Laborals de la UdL*: <a href="http://www.sprl.udl.cat/alumnes/index.html">http://www.sprl.udl.cat/alumnes/index.html</a>

## Learning objectives

Know the benefits of the Surface Mount Technology (SMT) and its capabilities.

Know the different Surface Mount Devices (SMD), their main constructions, packages and packaging types.

Acquire knowledge to being able to design, manufacture and assembly electronic circuits based on SMT technology.

Master the design of Printed Circuit Boards (PCB) by means of a CAD and CAM environment.

Learn different soldering techniques with cleaning, testing, reflowing and reworking procedures.

Experiment with the assembly of PCB prototypes within middle entry range of automation.

Acquire knowledge to design integrated solutions with ECAD and MCAD workflow.

## Competences

#### Strategic Competences of the UdL

UdL2 Command of a foreign language.

UdL3 Mastering ICT's.

#### **Cross-disciplinary competences**

EPS4. To have the skills required to undertake new studies or improve the training with self-direction.

EPS9. Capacity for unidisciplinary and multidisciplinary teamwork.

#### Specific competences

GEEIA21. Knowledge of the basics and applications of the digital electronics and microprocessors.

GEEIA25. Knowledge and capacity for modelling and simulation of systems.

GEEIA27. Knowledge of principles and applications of robotic systems.

## Subject contents

- 1. Electronic circuits design and manufacturing
  - 1.1. Printed Circuit Boards (PCB)
  - 1.2. Introduction to SMT
  - 1.3. PCB Design
  - 1.4. EDA Software
  - 1.5. E-CAD and M-CAD workflow
  - 1.6. PCB Manufacturing
  - 1.7. PCB SMD Component Assembly
- 2. Joint Project: Development of an advanced electronic device
  - 2.1. Digital and power electronics design
  - 2.2. Design of the PCB with SMD technology
  - 2.3. Logical MCU programing with advanced peripherals
  - 2.4. Fabrication, assembly and start-up of the device

# Methodology

The subject is focused on continuous practical work in the electronics development for embedded systems.

The subject includes three session types:

- Theory sessions (classroom): Preliminary theoretical concepts before laboratoy experimentation.
- Experimental training sessions (electronics lab): Acquire skills by experimenting with practical examples with teacher support.
- Practical sessions (electronics lab): Student work related to deliverable practical tasks (individual) and the joint project (in group).

In group work sessions, the project-based learning methodology will be used. The students will put into practice the techniques proposed in the subject within the framework of a project common to the two second-semester fourth-year System Integration elective subjects.

The tools used in the practical work for design, manufacture and assembly of printed circuit boards (PCB) will be Autodesk CAD/CAM Eagle and Fusion 360.

Mid-range SMD soldering machines will be used to carry out the device manufacturing and assembly requirements of the joint project.

## Development plan

| Week   | Methodology                     | Content         | Joint Project<br>work | Individual work  | HTP <sup>(3)</sup> | HTNP (3) |
|--------|---------------------------------|-----------------|-----------------------|------------------|--------------------|----------|
| 1,2    | Masterclass                     | Lesson 1.1, 1.2 |                       |                  | 6                  | 2        |
| 2      | Experimental Sessions           | Lesson 1.2      |                       |                  | 2                  | 3        |
| 3      | Experimental Sessions           | Lesson 1.3      | WP1                   |                  | 2                  | 8        |
| 3      | Practical Sessions              | Lesson 1.3-1.4  | WP1                   | Practical Task 1 | 2                  | 3        |
| 4      | Experimental Sessions           | Lesson 1.4      | WP1                   |                  | 2                  | 2        |
| 4      | Practical Sessions              | Lesson 1.4      | WP1                   |                  | 2                  | 6        |
| 5      | Experimental Sessions           | Lesson 1.5      | WP3                   |                  | 2                  | 8        |
| 5      | Practical Sessions              | Lesson 1.5      | WP3                   | Practical Task 2 | 2                  | 4        |
| 6      | Practical Sessions              | Lesson 2        | WP3                   |                  | 4                  | 8        |
| 7, 8   | Experimental Sessions           | Lesson 1.6      | WP3                   |                  | 6                  | 6        |
| 8      | Practical Sessions              | Lesson 1.7      | WP4                   |                  | 2                  | 6        |
| 9      | Practices doubts <sup>(1)</sup> | Lesson 2        |                       |                  | 2                  | 4        |
| 10     | Practical Sessions              | Lesson 2        | WP4                   |                  | 4                  | 4        |
| 11     | Practical Sessions              | Lesson 2        | WP4                   |                  | 4                  | 4        |
| 12, 13 | Practical Sessions              | All             | WP6                   |                  | 8                  | 14       |
| 14     | Practical Sessions              | All             | WP7                   |                  | 4                  | 8        |
| 15     | Project presentation            | All             | All                   |                  | 4                  | 0        |
| 16, 17 | Practices doubts <sup>(1)</sup> | All             |                       |                  | 2                  | 0        |
| 18     | Tutorials                       | All             |                       |                  | 0                  | 0        |
| 19     | Make-up Exams: Evaluation       | All             |                       |                  | 0                  | 0        |
|        |                                 |                 |                       | TOTAL            | 60                 | 90       |

<sup>(1)</sup> Week for exams. As there are no written tests, they are dedicated to classes of practical questions.

### **Evaluation**

The course assessment will take place continuously and will be based on the weighted evaluation of the reports of the activities undertaken during the course.

The practical exercises are made up of two practical tasks (20%) and a joint project (80%) distributed within seven work packages (WPx). Each work package involves one or both subjects, Systems Integration II (SI2) and Sistems Integration III (SI3), with specific evaluation weight. Each work package involves one or both subjects, Systems Integration II (SI2) and Sistems Integration III (SI3), with specific evaluation weight.

The work packages of the joint project (**JP**) to be carried out are the following:

<sup>(2)</sup> HTP = Face-to-face Hours

<sup>(3)</sup> HTNP = Homework Hours

| Project Work Packages (WPx)                       | SI2 Rate | SI3 Rate | Minimum mark | Group activity | Mandatory |
|---------------------------------------------------|----------|----------|--------------|----------------|-----------|
| WP1: Device proposal.                             | 15%      | 15%      | NO           | 2 to 3         | YES       |
| WP2. Proof of concept.                            | 40%      | 0%       | 5            | 2 to 3         | YES       |
| WP3. Electronics design of the initial prototype. | 0%       | 35%      | 5            | 2 to 3         | YES       |
| WP4: Manufacture and assembly of the prototype.   | 0%       | 15%      | NO           | 2 to 3         | YES       |
| WP5. Initial prototype firmware.                  | 20%      | 0%       | NO           | 2 to 3         | YES       |
| WP6: Device test and refinements.                 | 5%       | 15%      | NO           | 2 to 3         | YES       |
| WP7: Product presentation and demonstration.      | 20%      | 20%      | 5            | 2 to 3         | YES       |

The practical tasks (PT) to be carried out are the following:

| Practical Tasks (PTx)                       | SI2 Rate | SI3 Rate | Minimum mark | Group activity | Mandatory |
|---------------------------------------------|----------|----------|--------------|----------------|-----------|
| PT1: Design electronic parts with 3D model. | 0%       | 50%      | 5            | NO             | YES       |
| PT2: PCB Power bank design.                 | 0%       | 50%      | 5            | NO             | YES       |

At this way, the course qualification (NC) will be calculated as:

$$NC = JP*0.8 + PT*0.2$$

If **NC** is lower than 5.0 there will be an optional make-up exam (**NR**) of full course content. Then, the final mark (**NF**) will be computed as:

NF = NR\*0.8 + NC\*0.2

## **Bibliography**

- Ray P. Prasad (1997) Surface Mount Technology: Principles and Practice. Springer. ISBN: 978-1-4615-4084-7.
- Carmen Capillo (1989) **Surface Mount Technology: Materials, Processes and Equipment**. McGraw-Hill. ISBN-13: 978-0070097810.
- William Ho (2010) **Optimal Production Planning for PCB Assembly**. Springer Series in Advanced Manufacturing. ISBN: 978-1-84628-500-4.
- Simon Monk (2014) **Make Your Own PCBs with EAGLE: from Schematic Designs to Finished Boards**. McGraw-Hill. ISBN-13: 9780071819251.
- Bruce Archambeault (2002) PCB Design for Real-world EMI Control. Springer. ISBN: 978-1-4757-3640-3.
- PCB Design & Schematic Autodesk EAGLE Software <a href="http://www.autodesk.com/products/eagle">http://www.autodesk.com/products/eagle</a>
- STM32 MCU evaluation tools from STMicroelectronics https://www.st.com/en/evaluation-tools/mcu-mpu-eval-tools.html