

DEGREE CURRICULUM SYSTEMS INTEGRATION II

Coordination: TRESANCHEZ RIBES, MARCEL

Academic year 2016-17

SYSTEMS INTEGRATION II 2016-17

Subject's general information

Subject name	SYSTEMS INTEGRATION II				
Code	102131				
Semester	2nd Q(SEMESTER) CONTINUED EVALUATION				
Туроlоду	Degree	Course	Typology	Modality	
	Bachelor's Degree in Automation and Industrial Electronic Engineering	4	OPTIONAL	Attendance- based	
ECTS credits	6				
Groups	1GG				
Theoretical credits	2				
Practical credits	4	4			
Coordination	TRESANCHEZ RIBES, MARCEL				
Department	INFORMATICA I ENGINYERIA INDUSTRIAL				
Teaching load distribution between lectures and independent student work	Total load: 150h - 60h of lectures (40%) - 90h of independent student work (60%)				
Important information on data processing	Consult <u>this link</u> for more information.				
Language	Speaking: As required (Catalan, Spanish or English). Materials and resources: English. Student workload: English.				
Distribution of credits	Theoretical sessions: 2 ECTS Experimental training sessions: 2 ECTS Practical sessions: 2 ECTS				
Office and hour of attention	Robotics Lab (2.04-EPS building). Monday 10:00-11:00 AM.				

SYSTEMS INTEGRATION II 2016-17

Professor/a (s/es)	Adreça electrònica professor/a (s/es)	Crèdits	Horari de tutoria/lloc
TRESANCHEZ RIBES, MARCEL	mtresanchez@diei.udl.cat	7,2	Wensday 17-18h, 2.07 EPS

Subject's extra information

It is mandatory to have coursed previously Systems Integration I subject. Also, it is very recommended to extend this optative subject to the third part (Systems Integration III) due to the complementary and shared content.

As the previous part of this optative module, to follow this subject properly previous knowledge on C programming, digital electronics design and signal processing are recommended.

Learning objectives

Acquire knowledge to be able to develop integrated systems with more complexity and automation.

Learn to develop embedded low-cost integrated systems for signal audio processing.

Master the peripheral interfaces for advanced communication of multimedia embedded devices.

Know how to integrate wireless transceivers for remote automation and control systems.

Understanding advanced techniques for the developement of low cost integrated systems.

Learn how to build control systems devices based on digital microelectronics.

Competences

Strategic Competences of the UdL

UdL2. Command of a foreign language.

UdL3. Mastering ICT's.

Cross-disciplinary competences

EPS4. To have the skills required to undertake new studies or improve the training with self-direction.

EPS9. Capacity for unidisciplinary and multidisciplinary teamwork.

Specific competences

GEEIA21. Knowledge of the basics and applications of the digital electronics and microprocessors.

GEEIA25. Knowledge and capacity for modelling and simulation of systems.

GEEIA27. Knowledge of principles and applications of robotic systems.

Subject contents

- 1. Introduction to USB hardware
- 2. USB OTG interfaces on microcontrollers
- 3. Introduction to Keil MDK-ARM
- 4. Digital audio processing on embedded systems
- 5. MMC and SD Card interfaces
- 6. Wireless connectivity on embedded systems

Methodology

Learning systems integration will be carried out by STMicroelectronics development tools, mainly with STM32F4-Discovery that includes an ARM Cortex-M high performance 32 bit microcontroller.

Development kits will be provided entirely by the school where each student will work individually.

The student assessment will take place continuously and will be based on the weighted evaluation of the reports of the activities undertaken throughout the course. The practical exercices, as far as possible, have to be carried out individually both in class and at home. These practices will be based on microcontroller programming using C language and application digital integrated circuits on microcontrollers.

Development plan

Week	Description	Classroom activity	Clasroom hours	Student workload hours
1	Presentation	Masterclass	2	0
1-2	Lesson 1: Lecture	Masterclass	4	5
2	Lesson 1: Exercices	Exercices	2	4
3	Lesson 2: Lecture	Masterclass	4	6
4	Lesson 2: Lecture/Experimental	Experimentation	2	3
4-5	Lesson 2: Practices	Practical exercice 1	4	8
5	Lesson 3: Lecture/Experimental	Experimentation	2	4
6	Lesson 4: Lecture	Masterclass	4	6
7	Lesson 4: Experimental	Experimentation	4	5
8	Lesson 4: Practices	Practical exercice 2	4	10
9	Evaluation exam 1	Practices doubts	2	0
10	Lesson 4: Practices	Practical exercice 2	2	5
10-11	Lesson 5: Lecture/Experimental	Experimentation	4	6
11	Lesson 6: Lecture/Experimental	Experimentation	2	4
12	Lesson 6: Exercices	Exercices	2	6

SYSTEMS INTEGRATION II 2016-17

Week	Description	Classroom activity	Clasroom hours	Student workload hours
12-14	Final project	Practical exercice 3	10	12
15-16	Evaluation exam 2	Practices doubts	2	0
17	Tutorials	Tutorials	2	0
18	make-up exam	Evaluation	2	6

Evaluation

The workload assessed consist in the enforcement of three main consistent practical works based on the development of integrated applications using microcontrollers. Specifically, the issues will be:

P1: Design an USB mouse peripheral with an accelerometer

P2: Implementaion of an integrated system for audio processing

P3: Developement a bidirectional wireless walkie-talkie device

At this way, the course qualification (NC) will be calculated as:

NC = P1*0.3 + P2*0.3 + P3*0.4

If NC is lower than 5.0 there will be an optional exam with a weight of 8 points, the final mark will be computed with:

 $NF = NR + (NC \times 0,2)$

Bibliography

- Reference manuals and application notes from manufacturers

- STM32F4Discovery from STMicroelectronics http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419

- STMicroelectronics development boards http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419 http://www.st.com/web/catalog/tools/FM146/CL1984/SC720/SS1462/PF255417

- Jan Axelson (2009) USB Complete: The Developer's Guide, Fourth Edition, Lakeview Research LLC. Madison, WI 53704.

- Jonathan W Valvano (2015) Embedded Systems: Introduction to Arm® Cortex(TM)-M Microcontrollers , Fifth Edition. ISBN: 978-1477508992

- Joseph Yiu (2013) The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors. Elseiver. Cambidge, UK.

- Donald Reay (2015) Digital Signal Processing and Applications Using the Arm Cortex M4. Wiley. ISBN: 978-1118859049.

- Warwick A. Smith (2009) C Programming for Embedded Microcontrollers. Publitronic-Elektor. ISBN: 978-0905705804.