

DEGREE CURRICULUM INDUSTRIAL COMPUTING

Coordination: GUIRADO FERNÁNDEZ, FERNANDO

Academic year 2019-20

Subject's general information

Subject name	INDUSTRIAL COMPUTING						
Code	102129						
Semester	2nd Q(SEMESTER) CONTINUED EVALUATION						
Typology	Degree		Course	Course Character		Modality	
	Bachelor's Degree in Automation and Industrial Electronic Engineering		3	COMPULSORY		Attendance- based	
Course number of credits (ECTS)	6						
Type of activity, credits, and groups	Activity type	PRALAB	P	PRAULA		TEORIA	
	Number of credits	0.4		2.6		3	
	Number of groups	4		1		1	
Coordination	GUIRADO FERNÁNDEZ, FERNANDO						
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING						
Teaching load distribution between lectures and independent student work	30% lecture 70% autonomous work						
Important information on data processing	Consult this link for more information.						
Language	Idioma Percentatge d'ús Castellà 0.0 Català 90.0 Anglès 10.0						
Distribution of credits	20% theoretical content 30% classroom activities 50% laboratory						
Office and hour of attention	Email to the professor						

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
GUIRADO FERNÁNDEZ, FERNANDO	fernando.guirado@udl.cat	0	
PARDO CASANOVAS, VALENTI	valenti.pardo@udl.cat	7,2	

Subject's extra information

Course taught in the second semester of the third year.

Is within the specific training modules.

It is recommended to have a user-level knowledge of operating systems and programming.

Learning objectives

- User-level knowledge of Linux operating system
- Know how to use the commands associated with the file system in LINUX
- Understand the concept of process and how to use the associated tools in Linux
- Representation of computational problems by pseucode
- To know the programming language C
- Developing small applications in C language

Competences

Strategic competencies of the University of Lleida

UDL3 - Domain of Information Technology and Communication.

Specific skills of the program

GEEIA3. Basic knowledge of the use and programming of computers, operating systems, databases and computer programs with applications in engineering.

GEEIA19 - Applied knowledge of industrial computing and communications.

Transversal competences of the degree

EPS1 - Ability to solve problems and develop and defend arguments in their area of study.

Subject contents

- 1. Operative System LINUX
 - 1. The file system structure
 - 2. The file system Permission
 - 3. Process manegement
- 2. Language C Programming

- 1. The GNU compiler
- 2. Compiler directives
- 3. Data types
- 4. Variable declaration
- 5. Operators
- 6. Basic programming structures
- 7. Functions
- 8. Data estructures
- 9. Pointers and dynamic memory management.

Methodology

The course is composed by:

- Lecture classes: The main theory for the course will be presented.
- Individual exercices: Some exercices, proposed by the professor, have to be developed and presented individually.
- Laboratory practices: Some practical work will be done using the computers present in the laboratory.

Development plan

	Development		
Week 1	Presentation and contents summary		
(4h Lecture class / 6h Autonomous work)	Introduction to the Operative Systems. LINUX operative System - Introduction to the file system		
Week 2	LINUX operative System - Introduction/File system		
(4h Lecture class / 6h Autonomous work)	LINUX operative System - File system		
Week 3 (4h Lecture class / 6h Autonomous work)	LINUX operative System - Permissions		
Week 4 (4h Lecture class / 6h Autonomous work)	LINUX operative System - Process status		
Week 5	Computational solving problems		
(4h Lecture class / 6h Autonomous work)	C Programming Introduction		
Week 6 (4h Lecture class / 6h Autonomous work)	C Programming Introduction		
Week 7	Error control and deputarion		
(4h Lecture class / 6h Autonomous work)	Structured programming - Functions - Libraries		
Week 8	Structured programming - Functions - Libraries		
(4h Lecture class / 6h Autonomous work)	Partial exam doubts session		
Week 9	Partial Exams		
Week 10 (4h Lecture class / 6h Autonomous work)	Arrays - Vectors		

Week 11 (4h Lecture class / 6h Autonomous work)	Data structures
Week 12 (4h Lecture class / 6h Autonomous work)	Pointers
Week 13 (4h Lecture class / 6h Autonomous work)	Dynamic memory management
Week 14 (4h Lecture class / 6h Autonomous work)	Dynamic memory management
Week 15	Doubts session

Evaluation

The grade has two parts: Exams and Practice

The mark of the exam is 30% of the total mark of the subject. There will be two exams one for each part, which will have the same weight and have no minimum mark.

The note of practice is 70% of the total mark of the subject.

The practices of the course are:

- PRA1. · Linux Filesystem
- PRA2. Linux · Permits
- PRA3. · Linux Processes
- PRA4. C · flow control
- PRA5. C · Structured programming: functions and libraries
- PRA6. C · Vectors and random numbers
- PRA7. · C Data Structures
- PRA8. · · C pointers Dynamic memory

Requirements / Features practices:

Practices are compulsory and non-recoverable.

In order to be evaluated, the practices must pass a validation test that will not take any mark.

They have no minimum mark.

Practices can be made in pairs.

Bibliography

Bibliografia recomanada

Blanco, Jaime. Linux/Ubuntu: curso de iniciación. Inforbook's, DL 2006

Dalheimer, Matthias Kalle. Guía de referencia y aprendizaje Linux. Anaya Multimedia, cop. 2006, Edición 2ª ed.

H.M. Deitel and P.J. Deitel. ComoProgramar en C/C++. Prentice-Hall, segunda edición, 2002.

B.W. Kernighan and D.M. Ritchie. Ellenguaje de programación C. Prentice-Hall, segundaedición, 1991.

F. Xhafa; P. Vázquez, J. Marco, X. Molinero and A. Martín. Programación en C++ paraingenieros. Paraninfo, 2006.

Adaptations to the contents due to COVID-19

Update test Adaptations to the contents -ds. 25 d'abr. 2020 10:22:36-

Adaptations to the methodology due to COVID-19

Update test Adaptationsto the methodology -ds. 25 d'abr. 2020 10:22:36-

Adaptations to the development plan due to COVID-19

Update test Adaptations to the development plan -ds. 25 d'abr. 2020 10:22:36-

Adaptations to the evaluation due to COVID-19

Update test Adaptations to the evaluation -ds. 25 d'abr. 2020 10:22:36-