

CONTROL AND ROBOTICS SYSTEMS DESIGN

Coordination: Marcel Tresanchez Ribes

Academic year 2015-16

Subject's general information

Subject name	CONTROL AND ROBOTICS SYSTEMS DESIGN
Code	102127
Semester	2nd Q. Continued evaluation
Typology	Obligatory
ECTS credits	6
Theoretical credits	3
Practical credits	3
Coordination	Marcel Tresanchez Ribes
Office and hour of attention	Office (2.07) or Robotics Lab (2.04) at the EPS building. Monday 10:00-11:00 AM.
Department	Computer Science and Industrial Engineering
Modality	Presencial
Important information on data processing	Consult this link for more information.
Language	Catalan
Degree	Degree in Automation and Industrial Electronic Engineering
Distribution of credits	Lectures: 3 Credits Practical work: 3 Credits
Office and hour of attention	Office (2.07) or Robotics Lab (2.04) at the EPS building. Monday 10:00-11:00 AM.
E-mail addresses	mtresanchez@iei.udl.cat

Marcel Tresanchez Ribes

Subject's extra information

It is recomended to have coursed previously "Senyals i Sistemes" and "Teoria Bàsica del Control" subjects.

Learning objectives

Acquire the ability to design control and industrial automation systems.

Know the working of control systems in robotic systems.

Learn principles and applications of robotic systems

Identify and analyze the different parts of a robot

Understand the operation of a robot and be able to planning their possible application

Competences

Specific competences

GEEIA25. Knowledge and capacity for modelling and simulation of systems.

GEEIA26. Knowledge of automation and technical regulation of control and his application to the industrial automation.

GEEIA27. Knowledge of principles and applications of robotic systems.

GEEIA29. Capacity to design systems of industrial automation control.

Cross-disciplinary competences

EPS1. Capacity to solve problems and prepare and defence arguments inside the area of studies.

EPS2. Capacity to gather and interpret relevant data, within the area of study, to judge and think about relevant subjects of social, scientific and ethical nature.

Subject contents

T.1. Applied Control

- T.1.1. Practical application of control systems
- T.1.2. PID applied control
- T.1.3. Control by PWM signal
- T.1.4. Operation of stepper and DC motors
- T.1.5. Electronic solutions for motor controlling
- T.1.6. Examples of applied control

T.2. Robot control

- T.2.1. Direct kinematics model
- T.2.2. Methodology of Hartenberg-Denavit
- T.2.3. Inverse kinematics model

T.3. Applications

- T.3.1. Programming of robots in industry
- T.3.2. Feedback control of robots using image processing

Development plan

The development of the subject will be based on the practical work performed at different laboratories of the university.

The contents and description of the practical work will be available at the web.

The development of the practical work will be based on the MATLAB programming environment.

Evaluation

The evaluation is based on the weighted practical work performed during the course.

```
NC = (NP1*P1 + NP2*P2 + NP3*P3 + NP4*P4 + NP5*P5 + NP6*P6)
```

If **NC** is lower than 5.0 there will be an optional exam with a weight of 8 points, the final mark will be computed with:

 $NF = NR + (NC \times 0.2)$

Bibliography

- Notes from the subject.
- Philip J. McKerrow, Addison-Wesley: Introduction to Robotics. ISBN 0-534- 914370-5.
- A. Barrientos, L.F. Peñín, C. Balaguer, R. Aracil: **Fundamentos de robótica**, McGraw Hill, 1997. ISBN: 8448108159.
- K.S. Fu, R.C. González, C.S.G. Lee. McGraw-Hill: **Robótica: Control, Detección, Visión e Inteligencia.** ISBN 84-7615-214-0
- P. M. Taylor, Eds. Ceac: Control Robótico. ISBN 0-333043821-3
- Reyes Cortés, Fernado, Robótica: **Control de robots manipuladores**. Barcelona: México: Marcombo: Alfaomega 2011. ISBN: 9788426717450.
- Craig, John J.: Robótica. 3a ed. México: Pearson Educacion, 2006. ISBN: 9702607728.