

DEGREE CURRICULUM DISCRETE PROCESSES

Coordination: PALLEJÀ CABRÉ, TOMÀS

Academic year 2019-20

Subject's general information

Subject name	DISCRETE PROCESSES					
Code	102125					
Semester	2nd Q(SEMESTER) CONTINUED EVALUATION					
Туроlоду	Degree		Course	Character		Modality
	Bachelor's Degree in Automation and Industrial Electronic Engineering		3	COMPULSORY		Attendance- based
Course number of credits (ECTS)	6					
Type of activity, credits, and groups	Activity type	PRAULA		TEORIA		
	Number of credits	3	3		3	
	Number of groups			1		
Coordination	PALLEJÀ CABRÉ, TOMÀS					
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING					
Teaching load distribution between lectures and independent student work	(40%) 60 h classroom (60%) 90 h autonomous work					
Important information on data processing	Consult this link for more information.					
Language	English 10 % Spanish 10% Catalan 80%					
Office and hour of attention	by agreement					

Teaching staff		Credits taught by teacher	Office and hour of attention
PALLEJÀ CABRÉ, TOMÀS	tomas.palleja@udl.cat	6	

Subject's extra information

For a proper development of the teaching, it is needed that the student has already reach the basic knowledge of general topics like differential equations, Laplace's Transforms and previous knowledge in Dynamics, Circuit's Theories and Electronics. In order to reach the evaluations in a satisfactory level is recommended to be present at the lecture sessions and to have an active participation in them. Apart, is recommended that the student solves by its own the proposed exercises and the regular crosscheck of the bibliography.

The subject is defined to form specialists in Automation; it develops the theoretical basic knowledge in terms of Automation Controls that will be used as a basis for the learning of other graduation subjects and the future professional exercise. The study of the subject implies that the student is getting the basic needed knowledge to understand, analyze, design and evaluate Automatic Digital Control Systems. For that, is necessary to introduce to the student the Linear Control systems by the classic analysis techniques and system designs in the time-domain and s and z complex-domie.

Learning objectives

- Understand the digitalization concept.
- Learn the different kind of holders and their characteristics.
- Master the Z transform and the different digitalization methods.
- Relate the system transfer function poles whit the system stability.
- Learn the conditions and characteristics of FIR (Finite Impulse Response) controller.
- Analyze the system transient and stationary response.
- Analyze and design digital control systems.
- Digitalize analogical controllers.

Competences

Cross-disciplinary competences

- EPS1. Capacity to solve problems and prepare and defense arguments inside the area of studies.
- **EPS2**. Capacity to gather and interpret relevant data, within the area of study, to judge and think about relevant subjects of social, scientific and ethical nature.

Specific competences

- **GEEIA25.** Knowledge and capacity for modelling and simulation of systems.
- **GEEIA26.** Knowledge of automation and technical regulation of control and his application to the industrial automation.
- GEEIA27. Knowledge of principles and applications of robotic systems.
- **GEEIA29.** Capacity to design systems of industrial automation control.

Subject contents

1 Introduction to Discrete Time Control Systems

- 1.1 Introduction
- 1-2 Digital control systems
- 1-3 Quantification errors
- 1-4 Data acquisition and conversion systems

2 Mathematical processing of the sampled signal

- 2-1 Introduction
- 2-2 Periodic sampling
- 2-3 Fourier transform of a sampled function
- 2-4 Shannon's Theorem
- 2-5 Aliasing Problem

3 Ideal Sampling

- 3-1 Introduction
- 3-2 Laplace transform of the sampled function
- 3-3 Primary and secondary strips

4 Reconstruction of the original continuous function

- 4-1 Introduction
- 4-2 Ideal filter
- 4-3 Zero Order Holder
- 4-4 First Order Holder
- 4-5 Polynomial Holder

5 Z-Transform

- 5-1 Calculation of the Z-Transform.
- 5-2 Z transform of elementary functions
- 5-3 Important properties and theorems of the Z-Transform
- 5-4 The Z Inverse Transformation
- 5-5 Use of the Z-Transform for the solution of differential equations.

6 Block Diagrams in Zed

6-1 Introduction

- 6-2 Phillips-Nagle simplification method
- 6-3 Systems with continuous and discrete blocks

7 Correspondence between the S-plane and the Z-plane

- 7.1 Primary band and unit circle
- 7.2 Variation of the poles as a function of the period.
- 7.3 Calculation of the number of samples per oscillation cycle.
- 7.4 Transformation techniques between the S-plane and the Z-plane.

8 Stability analysis

- 8.1 Introduction
- 8.2 General criteria
- 8.3 Jury's criteria
- 8.4 Bilinear Transformation and Routh-Hurwitz's criteria

9 Transient response and permanent regime

- 9.1 Transient response at impulse input
- 9.2 Transient Response Specifications
- 9.3 Steady state error

10 Design by the Root-Locus Method

- 10.1 Root-Locus plots
- 10.2 Lead Compensators
- 10.3 Lag Compensators

11 Frequency

- 11.1 Bode Diagrams
- 11.2 Lead Compensators
- 11.2 Lag Compensators

12 Compensators Digitization

13 Minimum time compensators

13.1 Introduction

13.2 Basic Design

13.3 Advanced design

Methodology

Master class

Problem-based learning

Practices using MatLab

Development plan

Week	Description;	Classroom Activity	Classroom/independent work
1	Lecture and problems	Lesson 1	4h/6h
2	Lecture and problems	Lesson 2	4h/6h
3	Lecture and problems	Lesson 3	4h/6h
4	Lecture and problems	Lesson 4	4h/6h
5	Lecture and problems	Lesson 5	4h/6h
6	Lecture and problems	Lesson 6	4h/6h
7	Lecture and problems	Lesson 7	4h/6h
8	Lecture and problems	Review	4h/6h
9	Written tests	First mid-term exam	2h/3h
10	Lecture and problems	Lesson 8	4h/6h
11	Lecture and problems	Lesson 9	4h/6h
12	Lecture and problems	Lesson 10	4h/6h
13	Lecture and problems	Lesson 11 and 12	4h/6h
14	Lecture and problems	Lesson 13	4h/6h
15	Lecture and problems	Review	4h/6h
16	Written tests	Second mid-term exam	2h/3h
17			
18			
19	Written tests	Recovery exam	

Evaluation

Due to the class incremental learning, the second partial exam will have a greater deal than the first one. To avoid students relaxing at the end of the course, a mark higher than 3.5 will be expected at the second partial in order to average it with the practices, that is to say, the final mark will be like so:

First Partial Mark:		PP (30%)	First Assignment:	P1 (10%)		
Second Partial Mark:		SP (50%)	Second Assignment	P2 (10%)		
Recovery Exam		RE				
Case	Tests marks		Fiinal mark calculation			
A	Si (PP ≥5 i SP <3.5)		PP 0.3 + SP 0.5			
В	Si (PP ≥5 i SP ≥3.5)		PP 0.3 + SP 0.5 + P1 0.1 + P2 0.1			
С	Si (<i>PP</i> < 5 i <i>SP</i> ≥ 3.5)		SP 0.8 + P1 0.1 + P2 0.1			
D	Si (PP < 5 i SP < 3.5)		SP 0.8			
E	Si (RE < 3.5)		RE 1			
F	Si (<i>RE</i> ≥ 3.5)		RE 0.8 + P1 0.1 + P2 0.1			
For the case B, final marck = max{B,C} For the case F, final marck = min{F,6.9}						

Bibliography

SISTEMAS DIGITALES Y ANALÓGICOS, TRANSFORMADAS DE FOURIER, ESTIMACIÓN ESPECTRAL.

Athanasios Papoulis.

Ed. Marcombo. 1978

SISTEMAS DE CONTROL

G.H. Hosteter, C.J. Savant, R.T. Stefani.

Ed. Interamericana. 1984

INGENIERÍA DE CONTROL MODERNA

Katsuhiko Ogata

Ed. Prentice Hall. 1998

SISTEMAS DE CONTROL AUTOMÁTICO

B.C. Kuo

Ed. Prentice Hall. 1996.

DISCRETE TIME SIGNAL PROCESSING

A.V. Oppenheim, R.W. Schaffer

Ed. Prentice Hall. 1998.

INGENIERÍA DE CONTROL UTILIZANDO MATLAB

Katsuhiko Ogata

Ed. Prentice Hall. 1999

CONTROL DE SISTEMAS DISCRETOS

O. Reinosa, J.M. Sebastián, F.T. Medina, R.A. Santoja

Ed. Mc Graw Hill. 2004

Adaptations to the methodology due to COVID-19

The flipped-classroom methodology will be applied:

• Every Monday the theory and problems to study that week will be uploaded to the virtual campus. Some problems have the solution step by step, and others only the final result. One of these problems will be assessed (one exercise per week).

• The practices will not be altered; they will be done online on the scheduled dates.

• On Thursdays and Fridays, videoconferences will be held to answer questions about theory, problems and practices.

• The interventions in the forum of the subject and the relevant questions will be rewarded with positives.

Adaptations to the evaluation due to COVID-19

- Continuous assessment exercises: 30%
- Practice 1: 15%
- Practice 2: 15%
- Final exam: 40%. Minimum grade to pass the subject: 3.5 / 10.
- Resitting: 40%. Minimum grade to pass the subject: 3.5 / 10.