

DEGREE CURRICULUM DIGITAL ELECTRONICS

Coordination: ROIG MATEU, CONCEPCIÓN

Academic year 2021-22

Subject's general information

Subject name	DIGITAL ELECTRONICS						
Code	102120						
Semester	1st Q(SEMESTER) CONTINUED EVALUATION						
Typology	Degree			Course	Chara	acter	Modality
	Bachelor's Degree in Automation and Industrial Electronic Engineering			3	СОМ	PULSORY	Attendance- based
Course number of credits (ECTS)	6						
Type of activity, credits, and groups	Activity type	PRALAB	PRA	ULA		TEORIA	
	Number of credits	0.4	2.	.6		3	
	Number of groups	4	2	2		1	
Coordination	ROIG MATEU, CONCEPCIÓN						
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING						
Teaching load distribution between lectures and independent student work	60 hours of lecturer classes. 90 hours of indpendent student work.						
Important information on data processing	Consult this link for more information.						
Language	Catalan						

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
ROIG MATEU, CONCEPCIÓN	concepcio.roig@udl.cat	3,8	
SOLA GIMENO, JOSEP MARIA	josepmaria.sola@udl.cat	6	

Learning objectives

Goals

- Learning basic digital devices.
- Establishing operation mechanisms of digital circuits.
- Understanding the applicability of digital circuits in de development of control circuitry and micropocessors.
- Proposing digital circuits able to solve specific problems, meeting constrains related to minimization and avalability of devices.
- Analysis of the behaviour of a specific digital circuit and deduction of the implemented logic functions .
- Given a specific situation to be solved with a digital circuit, find out the minimum circuit that responds for this solution.

Competences

Degree-specific competences

- GEEIA21. Knowledge of the basics and applications of digital electronics and microprocessors.
- GEEIA24. Capacity to design analog, digital and power electronic systems.

Degree-transversal competences

- EPS2. Capacity to gather and interpret relevant data, within the area of study, to judge and think about relevant subjects of social, scientific and ethical nature.
- EPS6. Capacity of analisys and synthesis.

Subject contents

A. Theory contents

Chapter 1. Logic functions

- 1.1. Switching algebra
- 1.2. Representation of functions.
- 1.3. Incompletely specified functions.
- 1.4. Simplification methods,

Chapter 2. Combinational circuits

2.1. Pulse and level signals.

2.2. Logic gates.

- 2.3. Positive and negative logic.
- 2.4. Two gate level circuits.
- 2.5. Analysis and design of combinational circuits.
- 2.6. Combinational systems.

Multiplexer/ Demultiplexer

Encoder/ Decoder

Comparators

One bit adder/ substractor

N bits adder

2.7. Programmable lógic devices

- Chapter 3. Sequential circuits
- 3.1. Basic memory cell
- 3.2. Flip-flops
- 3.3. Synchronism
- 3.4. Analysis and design of synchronous sequential circuits
- 3.5. Registers and counters.
- 3.6. Analysis and design of assynchronous sequential circuits

B. Practices contents

- 1. Simulation of electronic digital circuits with the s/w PROTEUS (session 1)
- 2. Hardware implementation of digital circuits with components of 7400 family (session 2)
- 3. Hardware implementation of digital circuits with Fiels Programmable Gate Arrays (session 3)
- 4. Project design of a digital circuit using commercial combinational and sequential components (sessions 4, 5, and 6)

Methodology

During the week, each student attends 2 hours in the Theory group and 2 hours in the problems/practices group (PraAula1 or PraAula2).

- Classes of Virtual Theory. Master classes devoted to presentation of new contents. (3 credits)

They are expositive classes where they are shown the main contents of the subject, supported by exercices and examples.

- Classes of problems/practices group (PraAula). Problem solving and practices. (3 credits)

Exercices related to the contents exposed in Theory classes are solved in a participative and interactive way. Also, laboratory practices of digital circuits are carried out using the simulator ISIS of Proteus, with FPGA and discrete components in the electronics laboratoy.

It is COMPULSORY that the students bring the following elements of individual protection (EPI) to the practices at the laboratory.

- Blue laboratory gown from UdL (unisex)
- Protection glasses
- Mechanical protection gloves

They can be purchased through the shop Údels of the UdL:

C/ Jaume II, 67 baixos Centre the Cultures i Cooperació Transfronterera

http://www.publicacions.udl.cat/

Development plan

Week	Description	Activity Theory Group	Activity problems/practices group
1	Logic functions	Presentation of the subject. Switching algebra. Representation of functions.	Exercises of logic functions
2	Logic functions	Incompletely specified functions. Simplification methods	Exercises of logic functions
3	Combinational circuits	Pulse and level signals. Logic gates. Positive and negative logic. Two level circuits.	Exercises of combinational circuits
4	Combinational circuits	Analysis and design of combinational circuits.	Exercises of combinational circuits
5	Combinational circuits	Multiplexer/Demultiplexer. Encoder/Decoder.	Exercises of combinational circuits
6	Combinational circuits	Comparators. Adder/substractor of 1 bit	Practice 1

7	Combinational circuits	n bits adders	Practice 2
8	Combinational circuits	Programmable logic devices	Exercises of combinational circuits
9	Partial exams	Realization first partial exam	
10	Sequential circuits	Basic memory cell	Practice 3
11	Sequential circuits	Flip-flops and synchronism	Practice 4
12	Sequential circuits	Analysis and design of synchronous sequential circuits	
13	Sequential circuits	Analysis and design of synchronous sequential circuits	Practice 5
14	Sequential circuits	Registers and counters	Practice 6
15	Sequential circuits	Asynchronous circuits	Exercises of sequential circuits
16	Partial exams	Realization second partial exam	
17	Partial exams	Realization second partial exam	
18	Tutorials		
19	Recuperation exams	Exam recuperation, if necessary.	

Evaluation

N_P1: Mark of first partial exam

N_P2: Mark of second partial exam.

N_Pr: Mark of practices.

The final mark of the subject is calculated as following: FINAL_MARK = 20% N_P1 + 50% N_P2 + 30% N_Pr

To pass the subject it is necessary that FINAL_MARK is greater than or equal to 5.

In the case of not having passed the subject, there is the option to have a recuperation exam. In this case the FINAL_MARK is calculated as following:

N_rec: Mark of the recuperation exam. FINAL_MARK = 70% N_rec + 30% N_Pr

Bibliography

- Lloris A., Prieto A., Parrilla L. Sistemas digitales. McGraw-Hill.
- Gajski D. D. Principios de Diseño Digital. Prentice-Hall.
- García Zubía J. Problemas resueltos de electrónica digital. Thomson.
- Marcovitz A. Introduction to logic design. McGraw-Hill.
- Floyd T. L. Digital Fundamentals. Pearson