

DEGREE CURRICULUM DIGITAL ELECTRONICS

Coordination: ROIG MATEU, CONCEPCIÓN

Academic year 2019-20

Subject's general information

Subject name	DIGITAL ELECTRONICS							
Code	102120							
Semester	1st Q(SEMESTER) CONTINUED EVALUATION							
Typology	Degree	Course	Character		Modality			
	Bachelor's Degi Industrial Electro	3	COMPULSORY Attendance-based					
Course number of credits (ECTS)	6							
Type of activity, credits, and groups	Activity type	PRALAB	PRAI	PRAULA		TEORIA		
g	Number of credits	0.4	2.0	6	3			
	Number of groups	4	2	2		1		
Coordination	ROIG MATEU, CONCEPCIÓN							
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING							
Important information on data processing	Consult this link for more information.							
Language	Catalan							
Office and hour of attention	Concepció Roig: Friday from 13:00 h to 14:00 h, Josep M. solà: Friday from 13:00 h to 14:00 h.							

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
ROIG MATEU, CONCEPCIÓN	concepcio.roig@udl.cat	3	
SAIZ VELA, ALBERT	albert.saiz@udl.cat	,8	
SOLA GIMENO, JOSEP MARIA	josepmaria.sola@udl.cat	6	

Learning objectives

Goals

- Learning basic digital devices.
- Establishing operation mechanisms of digital circuits.
- Understanding the applicability of digital circuits in de development of control circuitry and micropocessors.
- Proposing digital circuits able to solve specific problems, meeting constrains related to minimization and availability of devices.
- Analysis of the behaviour of a specific digital circuit and deduction of the implemented logic functions .
- Given a specific situation to be solved with a digital circuit, find out the minimum circuit that responds for this solution.

Competences

Degree-specific competences

- GEEIA21. Knowledge of the basics and applications of digital electronics and microprocessors.
- GEEIA24. Capacity to design analog, digital and power electronic systems.

Degree-transversal competences

- EPS1. Ability to resolve problems and elaborate and defend arguments inside their field of study.
- EPS6. Capacity of analisys and synthesis.

Subject contents

Chapter 1. Logic functions

- 1.1. Switching algebra
- 1.2. Representation of functions.
- 1.3. Incompletely specified functions.
- 1.4. Simplification methods,
- 1.5. Multifuncional simplification.

Chapter 2. Combinational circuits

2.1. Pulse and level signals.

- 2.2. Logic gates.
- 2.3. Positive and negative logic.
- 2.4. Two gate level circuits.
- 2.5. Analysis and design of combinational circuits.
- 2.6. Combinational systems.

Multiplexer/ Demultiplexer

Encoder/ Decoder

Comparators

One bit adder/ substractor

N bits adder

Chapter 3. Sequential circuits

- 3.1. Basic memory cell
- 3.2. Flip-flops
- 3.3. Synchronism
- 3.4. Analysis and design of synchronous sequential circuits
- 3.5. Registers and counters.
- 3.6. Analysis and design of assynchronous sequential circuits

Chapter 4. Memories and programmable logic devices.

- 4.1. ROM Memory
- 4.2. Combinational PLD
- 4.3. Sequential PLD

Methodology

During the week, each student attends 2 hours of classes in Big Group and 2 hours in Medium Group.

- Classes of Big Group. Master classes. (3 credits)

They are expositive classes where they are shown the main contents of the subject, supported by exercices and examples.

- Classes of Medium Group. Problem solving and practices. (3 credits)

Exercices related to the contents exposed in Master classes are solved in a participative and interactive way. Also, laboratory practices of digital circuits are carried out using the simulator ISIS of Proteus. Besides, practices are carried out in the electronic laboratoy.

It is **COMPULSORY** that the students bring the following elements of individual protection (EPI) to the practices at the laboratory.

- Blue laboratory gown from UdL (unisex)
- Protection glasses
- · Mechanical protection gloves

They can be purchased through the shop Údels of the UdL:

C/ Jaume II, 67 baixos

Centre the Cultures i Cooperació Transfronterera

http://www.publicacions.udl.cat/

Development plan

Week	Description	Activity Big Group	Activity Medium Group		
1	Logic functions	Presentation of the subject. Switching algebra. Representation of functions.	Exercises of logic functions		
2	Logic functions	Incompletely specified functions. Simplification methods	Exercises of logic functions		
3	Combinational circuits	Pulse and level signals. Logic gates. Positive and negative logic. Two level circuits.	Exercises of combinational circuits		
4	Combinational circuits	Analysis and design of combinational circuits.	Exercises of combinational circuits		
5	Combinational circuits	Multiplexer/Demultiplexer. Encoder/Decoder.	Practice 1		
6	Combinational circuits	Comparators. Adder/substractor of 1 bit	Exercises of combinational circuits		
7	Combinational circuits	n bits adders	Practice 2		
8	Sequential circuits	Basic memory cell	Exercises of sequential circuits		
9	Partial exams	Realization first partial exam			
10	Sequential circuits	Flip-flops and synchronism	Exercises of sequential circuits		
11	Sequential circuits	Analysis and design of synchronous sequential circuits	Practice 3		
12	Sequential circuits	Registers and counters	Practice 4 (simulated part)		
13	Sequential circuits	Analysis and design of assynchronous sequential circuits	Practice 5		
14	Memories and programmable logic devices	ROM memory	Practice 4 (part implemented in the electronics lab.)		
15	Memories and programmable logic devices.	Combinational and sequential PLD	Practice 4 (part implemented in the electronics lab.)		
16	Partial exams	Realization second partial exam			
17	Partial exams	Realization second partial exam			
18	Tutorials				
19	Recuperation exams	Exam recuperation, if necessary.			

Evaluation

N_P1: Mark of first partial exam

N_P2: Mark of second partial exam.

N_Pr: Mark of practices.

The final mark of the subject is calculated as following: FINAL_MARK = $20\% N_P1 + 50\% N_P2 + 30\% N_Pr$

To pass the subject it is necessary that FINAL_MARK is greater than or equal to 5.

In the case of not having passed the subject, there is the option to have a recuperation exam. In this case the FINAL_MARK is calculated as following:

N_rec: Mark of the recuperation exam. FINAL_MARK = 70% N_rec + 30% N_Pr

Bibliography

- Lloris A., Prieto A., Parrilla L. Sistemas digitales. McGraw-Hill.
- Gajski D. D. Principios de Diseño Digital. Prentice-Hall.
- García Zubía J. *Problemas resueltos de electrónica digital*. Thomson.
- Marcovitz A. Introduction to logic design. McGraw-Hill.