

# DEGREE CURRICULUM DIGITAL ELECTRONICS

Coordination: ROIG MATEU, CONCEPCIÓN

Academic year 2016-17

# Subject's general information

| Subject name                             | DIGITAL ELECTRONICS                                                                               |        |            |                      |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------|--------|------------|----------------------|--|
| Code                                     | 102120                                                                                            |        |            |                      |  |
| Semester                                 | 1st Q(SEMESTER) CONTINUED EVALUATION                                                              |        |            |                      |  |
| Туроlоду                                 | Degree                                                                                            | Course | Typology   | Modality             |  |
|                                          | Bachelor's Degree in Automation and Industrial Electronic Engineering                             | 3      | COMPULSORY | Attendance-<br>based |  |
| ECTS credits                             | 6                                                                                                 |        |            |                      |  |
| Groups                                   | 1GG,2GM,4GP                                                                                       |        |            |                      |  |
| Theoretical credits                      | 3                                                                                                 |        |            |                      |  |
| Practical credits                        | 3                                                                                                 |        |            |                      |  |
| Coordination                             | ROIG MATEU, CONCEPCIÓN                                                                            |        |            |                      |  |
| Department                               | INFORMATICA I ENGINYERIA INDUSTRIAL                                                               |        |            |                      |  |
| Important information on data processing | Consult <u>this link</u> for more information.                                                    |        |            |                      |  |
| Language                                 | Catalan                                                                                           |        |            |                      |  |
| Office and hour of attention             | Concepció Roig: Friday from 13:00 h to 14:00 h,<br>Josep M. solà: Friday from 13:00 h to 14:00 h. |        |            |                      |  |

| Professor/a (s/es)     | Adreça electrònica professor/a (s/es) | Crèdits | Horari de tutoria/lloc                 |
|------------------------|---------------------------------------|---------|----------------------------------------|
| ROIG MATEU, CONCEPCION | roig@diei.udl.cat                     | 3       | Desk 3.13. Arrange a meeting by email. |
| SAIZ VELA, ALBERT      | asaiz@diei.udl.cat                    | 6,8     | desk 1.05. Arrange a meeting by email. |

## Learning objectives

Goals

- Learning basic digital devices.
- Establishing operation mechanisms of digital circuits.
- Understanding the applicability of digital circuits in de development of control circuitry and micropocessors.
- Proposing digital circuits able to solve specific problems, meeting constrains related to minimization and avalability of devices.
- Analysis of the behaviour of a specific digital circuit and deduction of the implemented logic functions .
- Given a specific situation to be solved with a digital circuit, find out the minimum circuit that responds for this solution.

#### Competences

#### Degree-specific competences

- GEEIA21. Knowledge of the basics and applications of digital electronics and microprocessors.
- GEEIA24. Capacity to design analog, digital and power electronic systems.

#### Degree-transversal competences

- EPS1. Ability to resolve problems and elaborate and defend arguments inside their field of study.
- EPS6. Capacity of analisys and synthesis.

#### Subject contents

Chapter 1. Logic functions

- 1.1. Switching algebra
- 1.2. Representation of functions.
- 1.3. Incompletely specified functions.
- 1.4. Simplification methods,
- 1.5. Multifuncional simplification.

#### Chapter 2. Combinational circuits

- 2.1. Pulse and level signals.
- 2.2. Logic gates.
- 2.3. Positive and negative logic.
- 2.4. Two gate level circuits.
- 2.5. Analysis and design of combinational circuits.

- 2.6. Combinational systems.
  - Multiplexer/ Demultiplexer
  - Encoder/ Decoder
  - Comparators
  - One bit adder/ substractor
  - N bits adder

#### Chapter 3. Sequential circuits

- 3.1. Basic memory cell
- 3.2. Flip-flops
- 3.3. Synchronism
- 3.4. Analysis and design of synchronous sequential circuits
- 3.5. Registers and counters.
- 3.6. Analysis and design of assynchronous sequential circuits

Chapter 4. Memories and programmable logic devices.

- 4.1. ROM Memory
- 4.2. Combinational PLD
- 4.3. Sequential PLD

## Methodology

During the week, each student attends 2 hours of classes in Big Group and 2 hours in Medium Group.

- Classes of Big Group. Master classes. (3 credits)

They are expositive classes where they are shown the main contents of the subject, supported by exercices and examples.

- Classes of Medium Group. Problem solving and practices. (3 credits)

Exercices related to the contents exposed in Master classes are solved in a participative and interactive way. Also, laboratory practices of digital circuits are carried out using the simulator ISIS of Proteus.

### Development plan

| Week | Description            | Activity Big Group                                                                              | Activity Medium Group               |
|------|------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------|
| 1    | Logic functions        | Presentation of the subject.<br>Switching algebra.<br>Representation of functions.              | Exercises of logic functions        |
| 2    | Logic functions        | Incompletely specified functions.<br>Simplification methods                                     | Exercises of logic functions        |
| 3    | Combinational circuits | Pulse and level signals.<br>Logic gates.<br>Positive and negative logic.<br>Two level circuits. | Exercises of combinational circuits |
| 4    | Combinational circuits | Analysis and design of combinational circuits.                                                  | Exercises of combinational circuits |

| 5  | Combinational circuits                         | Multiplexer/Demultiplexer.<br>Encoder/Decoder.           | Practice 1                                            |
|----|------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|
| 6  | Combinational circuits                         | Comparators.<br>Adder/substractor of 1 bit               | Exercises of combinational circuits                   |
| 7  | Combinational circuits                         | n bits adders                                            | Practice 2                                            |
| 8  | Sequential circuits                            | Basic memory cell                                        | Exercises of sequential circuits                      |
| 9  | Partial exams                                  | Realization first partial exam                           |                                                       |
| 10 | Sequential circuits                            | Flip-flops and synchronism                               | Exercises of sequential circuits                      |
| 11 | Sequential circuits                            | Analysis and design of synchronous sequential circuits   | Practice 3                                            |
| 12 | Sequential circuits                            | Registers and counters                                   | Practice 4 (simulated part)                           |
| 13 | Sequential circuits                            | Analysis and design of assynchronous sequential circuits | Practice 5                                            |
| 14 | Memories and programmable logic devices        | ROM memory                                               | Practice 4 (part implemented in the electronics lab.) |
| 15 | Memories and<br>programmable logic<br>devices. | Combinational and sequential PLD                         | Practice 4 (part implemented in the electronics lab.) |
| 16 | Partial exams                                  | Realization second partial exam                          |                                                       |
| 17 | Partial exams                                  | Realization second partial exam                          |                                                       |
| 18 | Tutorials                                      |                                                          |                                                       |
| 19 | Recuperation exams                             | Exam recuperation, if necessary.                         |                                                       |

### Evaluation

N\_P1: Mark of first partial exam

N\_P2: Mark of second partial exam.

N\_Pr: Mark of practices.

The final mark of the subject is calculated as following: FINAL\_MARK = 20% N\_P1 + 50% N\_P2 + 30% N\_Pr

To pass the subject it is necessary that FINAL\_MARK is greater than or equal to 5.

In the case of not having passed the subject, there is the option to have a recuperation exam. In this case the FINAL\_MARK is calculated as following:

N\_rec: Mark of the recuperation exam. FINAL\_MARK = 70% N\_rec + 30% N\_Pr

## Bibliography

- Lloris A., Prieto A., Parrilla L. Sistemas digitales. McGraw-Hill.
- Gajski D. D. Principios de Diseño Digital. Prentice-Hall.
- García Zubía J. Problemas resueltos de electrónica digital. Thomson.
- Marcovitz A. Introduction to logic design. McGraw-Hill.