

DEGREE CURRICULUM SYSTEMS INTEGRATION

Coordination: PIÑOL ESTEBAN, XAVIER

Academic year 2020-21

Subject's general information

Subject name	SYSTEMS INTEGRATION					
Code	102057					
Semester	2nd Q(SEMESTER) CONTINUED EVALUATION					
Туроlоду	Degree		Course	Ch	aracter	Modality
	Bachelor's Degree in Computer Engineering		4	COMPULSORY		Attendance- based
Course number of credits (ECTS)	9					
Type of activity, credits, and groups	y, credits, Activity PRALAB			TEORIA		
	Number of credits	3.6		5.4		
	Number of groups		1			
Coordination	PIÑOL ESTEBAN, XAVIER					
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING					
Teaching load distribution between lectures and independent student work	40% lectures; 60% student work					
Important information on data processing	Consult this link for more information.					
Language	Catalan					
Distribution of credits	Ferran Perdrix (3) Xavier Piñol (6)					

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
PERDRIX SAPIÑA, FERNANDO	ferran.perdrix@udl.cat	3	
PIÑOL ESTEBAN, XAVIER	xavier.pinol@udl.cat	6	

Subject's extra information

Knowledge of Java, Data Bases and Web Applications is assumed to properly follow the subject.

Learning objectives

- To konw the motives for the necessity of systems integration
- To indentify the main involved elements in an integration effort
- To apply current technologies to solve the integration needs
- To install and configure an application server
- To publish client and server applications for a web service on an application server.

Competences

Strategic competences of the UdL

- CT1: Mastering a foreign language, especially English.
- **CT2**: Training Experience in the use of the new technologies and the information and communication technologies.

Cross-disciplinary competences

• EPS11: Capacity to understand the needs of the user expressed in a no technical language.

Specific competences

- **GII-IS3:** Capacity to give solution to problems of integration taking into account the strategies, standards and available technologies.
- GII-IS5: Capacity to identify, evaluate and manage the potential risks that can arise.

Subject contents

Xavier Pinyol's Theory:

1. Java EE

- 1.1 Definition
- 1.2 Versions
- 1.3 Specifications
- 1.4 Application Server

- 2. Enterprise Applications
 - 2.1 Characteristics
 - 2.2 Types of Architectures
 - 2.3 Architecture Patterns
 - 2.4 Enterprise Archive (EAR)
- 3. Enterprise Applications Implementation
 - 3.1 HTTP
 - 3.2 Servlet
 - 3.3 Java Server Pages (JSP)
 - 3.4 Session
- 4. Persistence
 - 4.1 JDBC
 - 4.2 SQL and Java Types
 - 4.3 Data Sources
 - 4.4 Connection Pools
- 5. Web Services
 - 5.1 What Web Services are?
 - 5.2 Types of Web Services
- 6. SOAP Web Services
 - 6.1 Introduction
 - 6.2 Simple Object Access Protocol (SOAP)
 - 6.3 Web Service Description Language (WSDL).
 - 6.4 Universal Description, Discovery and Integration (UDDI)
- 7. Esquema Nacional Interoperatibilitat (ENI)
 - 7.1 Introduction
 - 7.2 Legal norms
 - 7.3 Esquema Nacional Interoperatibilitat
 - 7.4 Technical norms

Ferran Pèrdrix's Theory

- 1. Legacy Systems
 - 1.1 Introduction
 - 1.2 Motives for change
 - 1.3 Legacy System Structure

- 1.4 Inherited Data
- 1.5 ETL Processes
- 1.6 Design
- 1.7 Evaluation
- 2. Open Data
 - 2.1 Definition
 - 2.2 Basic principles
 - 2.3 Formats
 - 2.4 Problems and critiques
 - 2.5 Big Data
 - 2.6 Linked Data
 - 2.7 Available Open Data
 - 2.8 Examples

3. Semantic Web

- 3.1 Definition
- 3.2 Introduction (example)
- 3.3 Architecture
- 3.4 Fundamentals
- 3.5 RDF / RDF Schema
- 3.6 OWL Ontologies
- 4. SPARQL LAnguage
 - 4.1 Definition
 - 4.2 Query Types
 - 4.3 Parts of a SPARQL query
 - 4.4 Definition optimization
 - 4.5 Other clauses
 - 4.6 Examples

Used software:

- PostgreSQL
- JBoss Developer Studio
- Pentaho ETL

Methodology

Theory sessions:

• The basic concepts of the subject are presented, always working on concrete exampless concretos.

Laboratory sessions:

- Tools to use in the project are presented
- The project is developed and students solve the difficulties they find.

Autonomous work:

• f<or completing the tools and technologies learning and finish project development.

Development plan

Week	Theory by Xavier Pinyol	Theory by Ferran Pèrdrix	LAboratory
1	Java EE Introduction Bussiness aplications	Legacy Systems	
2		Open Data / Big Data	Installation of tools
3	Servlets & JSPs	Pentaho Envoronment	Servlets & JSPs
4	JDBC		Pentaho / DB
5	Web Services	Semantic Web	Data Source
6	Web Services	Semantic Web / SPARQL	
7			Web Services SPARQL
8	Q&A about project		Development of project
9	First midterm		
10			Development of project Delivery of Part 1
11			Presentation of Part 2 Development of project
12	ENI		Development of project
13	Application case: eAccessible		Development of project
14	Application case: Open Data at the Lleida's City Council		Development of project
15			Development of project Delivery of Part 2
16	Second midterm		
17	Second midterm		

Week	Theory by Xavier Pinyol	Theory by Ferran Pèrdrix	LAboratory
18	Tutories		
19	Recoveries		

Evaluation

Acr.	Description	Weight	Minimum grade	Mandatory	Recoverable	Ind/Group
Pa1	First midterm	20%	5.0	YES	YES	Ind
Pa2	Second midterm	20%	5.0	YES	YES	Ind
Pr1	First deliverable	20%	5.0	YES	YES	2-4
Pr2	Second deliverable	30%	5.0	YES	YES	2-4
Ex	Exercises ETL/SPARQL	10%	NO	NO	NO	Ind

Final grade = 0,20 * Pa1 + 0,20 * Pa2 + 0,20 * Pr1 + 0,30 * Pr2 + 0,10 * Ex

• Subject is passed when final grade is greater or equal thant 5,0 and all parts are greater that the minimum grade.

Bibliography

- M. C. Feathers, <u>Working effectively with Legacy Code</u>, Prentice-Hall (2005).
- M. Fowler, <u>Refactoring. Improving the Design of Existing Code</u>, Addison-Wesley (1999)
- J. Kerievsky, <u>Refactoring to Patterns</u>, Addison-Wesley (2005)