

DEGREE CURRICULUM SOFTWARE ARCHITECTURES

Coordination: GARCIA GONZALEZ, ROBERTO

Academic year 2020-21

Subject's general information

Subject name	SOFTWARE ARCHITECTURES					
Code	102055					
Semester	1st Q(SEMESTER) CONTINUED EVALUATION					
Typology	Degree		Course	Character		Modality
Bachelor's Computer I		•	4 CO		MPULSORY	Attendance- based
Course number of credits (ECTS)	9					
Type of activity, credits, and groups	Activity type	I PRALAB			TEORIA	
	Number of credits	3		6		
	Number of groups	1			1	
Coordination	GARCIA GONZALEZ, ROBERTO					
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING					
Teaching load distribution between lectures and independent student work	Total load: 225h - Lectures (40%) = 90h - Independent student work (60%) = 135h					
Important information on data processing	Consult this link for more information.					
Language	English					

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
BERGA GATIUS, ALBERT	albert.berga@udl.cat	5,4	Please, make your appointment via e-mail
GARCIA GONZALEZ, ROBERTO	roberto.garcia@udl.cat	5,4	Please, make your appointment via e-mail

Subject's extra information

To properly follow this subject, it is recommended to have consolidated software engineering and Web applications development skills like those presented in the Software Engineering and Web Systems and Technologies courses.

Learning objectives

- To present Web engineering and its fundamental applications patterns and architectures in the context of an agile methodology and Behaviour Driven Development.
- To have a global vision of the existent technologies to implement enterprise applications using the previous patterns and architectures, especially Java, Javascript and the Web.
- To put into practice the previous concepts and technologies through the development of a Web application
 project using Java (Spring) and Javascript (Angular), following an agile methodology and behaviour driven
 development (BDD).

Competences

Strategic Competences

CT2. Mastering a foreign language, especially English.

CT3. Training Experience in the use of the new technologies and the information and communication technologies.

Cross-disciplinary Competences

EPS11. Capacity to understand the needs of the user expressed in a no technical language.

Specific Competences

GII-IS1. Capacity to develop, maintain and evaluate services and software systems that satisfy all the requirements of the user and behave in a reliable and efficient way, they can develop, keep and fulfil quality requirements, applying the theories, principles, methods and uses of the software engineering.

GII-IS3. Capacity to give solution to problems of integration taking into account the strategies, standards and available technologies.

GII-IS4. Capacity to identify and analyse problems and design, develop, implement, verify and find software solutions on the base of a suitable knowledge of the theories, models and current techniques.

Subject contents

1. Agile Web Applications Development Process

- 1. Behaviour Driven Development (BDD) with Cucumber Java
- 2. Scrum using GitHub
- 3. Teamwork coordination using Version Control
- 4. Continuous Integration using TravisCI
- 5. Automated deployment using Heroku
- 2. Application Architecture Patterns
 - 1. Introduction and layered architecture
 - 2. Patterns in the domain layer
 - 3. Patterns in the integration layer
 - 4. Patterns in the presentation layer
 - 5. Technologies for pattern application
- 3. Web Application Implementation
 - 1. Server-side: Java (Spring)
 - 2. Client-side: TypeScript (Angular)

Methodology

The methodology is based on a Project-Based Learning approach where an enterprise software application is developed, focusing on Web-based applications. The course starts with a review of Web development frameworks from an industrial point of view analysing different reports about the state of the art of software development, etc. Based on these dimensions, Spring is selected for the server-side and Angular for the client one.

The first weeks of the course focus on fundamental aspects of software development, including project management ideas and development process concepts. Software architecture, specification, analysis and design are presented from a client/server and Web perspective, guided by enterprise application patterns. These concepts are the starting point for the students' project development.

The students select a project, under professors guidance, and complete a first deliverable where they apply these fundamental concepts to specify, analyse and design their project.

The rest of the course focuses on the implementation of the defined project and the required concepts related to Agile software development, Spring or Angular are introduced as needed to complete the development of the project.

Development plan

Week	Description	Face-to-Face Activities	Autonomous Student Work	
1	Frameworks and Methodologies	Study Frameworks JVM Servidor Study Frameworks JavaScript Client	Define project idea	
2	Frameworks and Methodologies	SCRUM and BDD	Define project using methodology term	
3	Sprint 1	Tutorials presentations Joint project development	Project development	
4	Sprint 1	Tutorials presentations Joint project development	Project development	
5	Sprint 1	Tutorials presentations Joint project development	Project development	
6	Sprint 1	Tutorials presentations Joint project development	Project development	

Week	Description	Face-to-Face Activities	Autonomous Student Work	
7	Sprint 1	Enterprise application patterns Joint project development	Study patterns application to project	
8	Sprint 1	Enterprise application patterns Sprint Retrospective	Study patterns application to project	
9		1st Midterm Exam	Study	
10	Sprint 2	Tutorials presentations Joint project development	Project development	
11	Sprint 2	Tutorials presentations Joint project development	Project development	
12	Sprint 2	Tutorials presentations Joint project development	Project development	
13	Sprint 2	Joint project development Sprint Retrospective	Project development	
14	Sprint 3	Tutorials presentations Joint project development	Project development	
15	Sprint 3	Tutorials presentations Joint project development	Project development	
16	Sprint 3	Joint project development Sprint Retrospective	Project development	
17-18		2nd Midterm Exam	Study	

Evaluation

Acr.	Evaluation Activity	Rate	Minimum Qualification	Group Activicty	Mandatory	Remedia Exam
P1	1st Midterm Exam	20%	NO	NO	YES	NO
P2	2nd Midterm Exam	20%	NO	NO	YES	NO
E1	1st Project Deliverable	20%	NO	1 or 2	YES	NO
E2	2ª Project Deliverable	20%	NO	1 or 2	YES	NO
E3	3ª Project Deliverable	20%	NO	1 or 2	YES	NO
Final Qualification = 0,2*P1 + 0,2*P2 + 0,2*E1 + 0,2*E2 + 0,2*E3						

The evaluation is fundamentally based on the development of a project following an agile methodology following 3 sprints and 3 deliverables:

Sprints 1, 1st Deliverable: 20% grade
Sprints 2, 2nd Deliverable: 20% grade
Sprints 3, 3rd Deliverable: 20% grade

For each sprint (review), the performance in developing the assigned tasks will be evaluated, which will be contextualised for each corresponding deliverable that takes into account aslo the developed product. The grade

will combine the outcomes for each deliverable together with its associated sprints.

The evaluation is complemented with two exams performed individually:

- 1st Midterm Exam: 20% grade, about fundamental aspects of the frameworks and methodologies used so far
- 2nd Midterm Exam: 20% grade, about the development experience of the project as a whole.

Bibliography

- Fowler, M.; Rice, D. (2003). Patterns of Enterprise Application Architecture. Addison-Wesley.
 - https://discovery.udl.cat/iii/encore/record/C__Rb1199416
- Walls, C. (2015). Spring in Action, 4th Edition. Manning.
 - https://discovery.udl.cat/iii/encore/record/C Rb1326886
- Carnell, J. (2017) Spring microservices in action. Manning.
 - https://discovery.udl.cat/iii/encore/record/C Rb1354387
- Wilken, J. (2018). Angular in action. Manning.
 - https://discovery.udl.cat/iii/encore/record/C Rb1354388
- Amuthan, G. (2014). Spring MVC: Beginner's guide Birmingham. Packt Publishing.
 - https://www.dawsonera.com/abstract/9781783284887