

DEGREE CURRICULUM HARDWARE AND SOFTWARE

VERIFICATION SYSTEMS

Coordination: BEJAR TORRES, RAMON

Academic year 2021-22

Subject's general information

Subject name	HARDWARE AND SOFTWARE VERIFICATION SYSTEMS						
Code	102044	102044					
Semester	2nd Q(SEMESTER) CONTINUED EVALUATION						
Typology	Degree		Course	Character		Modality	
	Bachelor's Degree in Computer Engineering		4	ICOMPULSORYI		Attendance- based	
	Bachelor's De Computer En	-	4	OPTIONAL		Attendance- based	
Course number of credits (ECTS)	6						
Type of activity, credits, and groups	Activity type	PRALA	PRALAB -		TEO	ORIA	
	Number of credits 3			3			
	Number of groups	1		1			
Coordination	BEJAR TORRES, RAMON						
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING						
Teaching load distribution between lectures and independent student work	6 ECTS = 25x6 = 150 - 60 hours of on-class activities - 90 hours of autonomous activities						
Important information on data processing	Consult this link for more information.						
Language	Catalan All the learning material, exercises and homework will be presented in English Personal attention can also be given in English.						
Distribution of credits	3 crèdits teoria 3 crèdits pràctica						

Teaching staff		Credits taught by teacher	Office and hour of attention
BEJAR TORRES, RAMON	ramon.bejar@udl.cat	6	

Subject's extra information

To successfully address the subject, it is advisable to have previously taken courses with contents about:

- Computational Logic (that is present in many computer engineering university degrees).
- Artificial intelligence (that is present in many computer engineering university degrees).

So, students wanting to study this subject should have finished at least those computer engineering subjects.

Learning objectives

Expected learning outcomes linked to UdL strategic and cross-disciplinary competences :

- To know how to prepare technical documents with different presentation tools for digital documents (CT3).
- To know how to work with technical and scientific documents written in English (CT2).
- To understand the main problems encountered in the design of intelligent systems capable of reasoning and learning and knows how to analize the requirements in the design of these systems (EPS6).

Expected learning outcomes linked to specific competences :

- To know and understand the fundamental problems of the formal specification of the behavior of programs (GII-C5).
- To know the formal specification of programs based on formal languages (GII-C5).
- To know how to use basic tools for semi-automatic verification of software, that need interaction with people to complete tasks that can not be automated 100%, and understand the limitations that the theoretical results on computability imposed on these tools (GII-C5, GII-C6).

Competences

Strategic:

CT2. Mastering a foreign language, especially English.

CT3. Training Experience in the use of the new technologies and the information and communication technologies.

Cross-disciplinary:

EPS6. Capacity of analysis and synthesis.

Specific:

GII-C5 Capacity to acquire, obtain, formalise and represent the human knowledge in a computable form to solve problems by means of a computer system in any field of application, particularly in the ones related

with computation, perception and performance in environments or intelligent surroundings.

GII-C6. Capacity to develop and evaluate interactive systems and of presentation of complex information and its application to solve problems of design of computer-person interaction.

Subject contents

- 1. Introduction to the verification of software and hardware
- 2. Formal verification of algorithms
- 3. Full Verification
 - Hoare Logic Calculus
 - Verification of While-Do programs
 - Partial versus full verification.
 - Forward verification with status updates
 - Verification of programs with the Key-Hoare tool
- 4. Partial Verification and Bug Finding
 - Verification systems through Bounded Model Checking (BMC)
 - Verification ANSI-C programs by CBMC tool
 - Hardware Verification by BMC

Methodology

There will be three types of activities:

- 1) On-line lectures with videos and with the videoconferencing tool of the virtual campus.
- 2) Classes for solving exercises, lab problems and mandatory assignments.
- 3) Independent work outside class for finishing exercises and doing the mandatory assignments.

Development plan

Week	Description	Classroom/Virtual Campus Activity	Autonomous Activity	Hours (F and A)
1	Presentation and introduction to formal software verification	Lectures		4 -
2	Formal specification and Symbolic Execution	Lectures and problem solving laboratory	Solve Exercises	4 6
3	Formal specification and Symbolic Execution	Lectures and problem solving laboratory	Study Solve Exercises	4 7
4	Hoare Logic with states – assignments and conditionals	Lectures and problem solving laboratory	Solve Exercises	4 6
5	Hoare Logic with states - loops	Lectures and problem solving laboratory	Study Solve Exercises	4 7

6	Hoare Logic with states - loops	Lectures and problem solving laboratory	Solve Exercises	4 6
7	Hoare Logic with states – loop termination	Lectures and problem solving laboratory	Work on 1st problem set assignment Solve Exercises	48
8	Hoare Logic with states – loop termination	Lectures and problem solving laboratory	Study Work on 1st problem set assignment	4 8
9	Evaluation	Written Exam on complete verification with Hoare Logic with states	Study Work on 1st problem set assignment	4 8
10	Introduction to BMC for digital software and hardware systems	Lectures and programming laboratory	Solve Exercises	4 6
11	Static Analysis in CBMC and formula building	Lectures and programming laboratory	Solve Exercises	4 6
12	The CBMC verification tool	Lectures and programming laboratory	Study Solve Exercises	4 6
13	CBMC user assertions	Lectures and programming laboratory	Study Solve Exercises	4 10
14	CBMC automatic assertions and code coverage	Lectures and programming laboratory	Study Work on 2nd problem set assignment	48
15	Verification of Verilog Hardware Designs	Lectures and programming laboratory	Study Work on 2nd problem set assignment	48
16			Study Work on 2nd problem set assignment	- 6
17	Evaluation	Written Exam on BMC and CBMC	Study Work on 2nd problem set assignment	26
18				
19				

Evaluation

Table with evaluation activities

Acr.	Evaluation activity	Weight	Minimum grade	In group	Mandatory
P1	Formal Verification Problems	25%	NO	YES	YES
P2	Formal Verification Problems	25%	NO	YES	YES
PR	Optional Exercises	10%	NO	NO	NO
E1	Written Exam (1)	20%	YES	NO	YES
E2	Written Exam (1)	20%	YES	NO	YES

FinalGrade = 0.25*P1 + 0.25*P2 + 0.10*PR + 0.20*E1 + 0.20*E2

(1): The minimum mark in both the E1 exam and the E2 exam to be able to pass the subject is 3.5 points out of 10 (for each one). If this condition is not satisfied, the final grade will be instead:

5 - (3.5 - minimum(E1,E2))

Bibliography

All learning material will be provided during the course in the form of slides, lecture notes and manuals of the different programs to be used. There is no convenient text book that can be used to follow the contents of this subject.