

DEGREE CURRICULUM

LANGUAGE PROCESSING
ALGORITHMS
Coordination: ALSINET BERNADO, MARIA TERESA

Academic year 2022-23

LANGUAGE PROCESSING ALGORITHMS 2022-23

Subject's general information

Subject name LANGUAGE PROCESSING ALGORITHMS

Code 102043

Semester 2nd Q(SEMESTER) CONTINUED EVALUATION

Typology Degree Course Character Modality

Bachelor's Degree in
Computer Engineering

4 COMPULSORY
Attendance-
based

Bachelor's Degree in
Computer Engineering

4 OPTIONAL
Attendance-
based

Course number of
credits (ECTS)

9

Type of activity, credits,
and groups

Activity
type

PRALAB TEORIA

Number of
credits

3.6 5.4

Number of
groups

1 1

Coordination ALSINET BERNADO, MARIA TERESA

Department COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING

Teaching load
distribution between
lectures and
independent student
work

70 hours lectures / 115 hours independent student work

Important information
on data processing

Consult this link for more information.

Language Catalan

Distribution of credits The classes of the subject are structured in 3 weekly hours aimed at solving practical
problems in the laboratory and 3 weekly hours of a more expository nature where the
algorithms, techniques and translation tools of each stage of the translation process
will be presented.

LANGUAGE PROCESSING ALGORITHMS 2022-23

https://unidisc.csuc.cat/index.php/s/ljIirDLEOoUr5Rj

Teaching staff E-mail addresses
Credits
taught by
teacher

Office and hour of attention

ALSINET BERNADO, MARIA
TERESA

teresa.alsinet@udl.cat 9

Subject's extra information

The following course is highly recommended:

Computational Models and Complexity

Learning objectives

The learning objectives of the course are:

Learning the levels, techniques, and algorithms involved in the translation process of programming
languages,
Using the tools to support the design and implementation of each level.
Analyzing the main features and implementation techniques associated with non-imperative languages as
logical, functional, scripting, object-oriented and distributed and concurrent languages.

Competences

Strategic competences of the University of Lleida

CT3. Training Experience in the use of the new technologies and the information and communication
technologies.
CT2. Mastering a foreign language, especially English.

Degree competences

EPS6. Ability of analysis and synthesis.

Specific Degree competences

GII-C2. Ability to know the theoretical basics of the programming languages and the techniques of lexical,
syntactic and associated semantic processing, and know how to apply them for the creation, design and
processing of languages.

Subject contents

Structure of the course topics:

1. Introduction to programming languages and translation techniques

LANGUAGE PROCESSING ALGORITHMS 2022-23

http://guiadocent.udl.cat/pdf/en/102039

2- Lexical analysis

3- Tool: Flex (The Fast Lexical Analyzer)

4 - Syntactic analysis: top-down and bottom-up parsers

5- Tool: Yacc (Yet Another Compiler Compiler)

6- Syntax-directed translation

7- Symbol Tables

8- Tool: SymTab

9- Type checking

10- Intermediate representation and code generation

11- Runtime Memory Management

12- Code optimization

13. Generating object code

Methodology

The classes of the subject are structured in 3 weekly hours aimed at solving practical problems in the laboratory
and 3 weekly hours of a more expository nature where the algorithms, techniques and translation tools of each
stage of the translation process will be presented. .

Students will solve practical exercises during the laboratory sessions and will approach in a group the preparation
and presentation of three works:

Use of regular expressions in programming languages
 Aspects of design and implementation of a particular programming language
Translator synthesis phase: Memory management in the execution environment and Code optimization

Development plan

The syllabus of the course is divided into two parts.

The first part deals with the specification and recognition of lexical components of programming languages, the
techniques of parsing routines and how to integrate semantic parsing algorithms. The student's training is
complemented by the study of specialized tools supporting the design and implementation of specific components
or translation systems. The following tools are introduced: JFLAP for specification and recognition of languages,
flex for generating lexical analyzers, yacc for generating bottom-up parsers, and SymTab for symbol tables.

The second part of the course deals with the levels of semantic analysis, code optimization and object code
generation. We show how to incorporate the process of semantic analysis routines that enable scope management,
type checking, intermediate code generation for major constructions of imperative languages and memory
allocation. Code optimizations dependent of the intermediate representation and machine object code are studied.

Finally, students choose a topic corresponding to the 2nd part of the subject and present it to the rest of the group,
in addition, they choose a programming language and present the main design and implementation characteristics.

Week Description Classroom Activity Big Group Classroom/independent work

1 Lecture and problems Lesson 1,2 6h/9h

LANGUAGE PROCESSING ALGORITHMS 2022-23

2 Lecture and problems Lesson 2,3 6h/9h

3 Development of activities Team work 6h/9h

4 Practices Presentation of practices 6h/9h

5 Lecture and problems Lesson 4,5 6h/9h

6 Lecture and problems Lesson 4,5 6h/9h

7 Development of activities Team work 6h/9h

8 Practices Presentation of practices 6h/9h

9 First mid-term exam

10 Lecture and problems Lesson 6 6h/9h

11 Lecture and problems Lesson 7,8 6h/9h

12 Lecture and problems Lesson 9,10 6h/9h

13 Lecture and problems Lesson 11,12, 13 6h/9h

14 Development of activities Team work 6h/9h

15 Practices Presentation of practices 6h/9h

16 Written tests Second mid-term exam

17 Written tests Second mid-term exam

18 Study week

19 Written tests Recovery exam

Week Description Classroom Activity Big Group Classroom/independent work

Evaluation

Acronym Evaluation activities Weighting
Min.

Score

Group

work
Compulsory Recuperable

PR1 Practice 1: Lex 20% - Yes Yes Yes

PR2 Activity 1: Regular expressions 10% - Yes Yes No

PR3 Practice 2: Yacc 20% - Yes Yes Yes

PR5
 Activity 2: Design and implementation of

programming languages
10% - Yes Yes No

PR4 Practice 3: Project 30% - Yes Yes Yes

PR5 Activity 3: Semantics and Synthesis stage 10% - Yes Yes No

The course activities consist of:

Lex: use of the generation tool lex (lexical analyser).

LANGUAGE PROCESSING ALGORITHMS 2022-23

Regular expressions: Regular expressions in programming languages. Oral presentation to the rest of the
group.
YACC: use of the generation tool yacc (parser).
Design and implementation of programming language: Oral presentation to the rest of the group.
Project: Use the tool SymTab to implement symbol tables and integration with tools lex and yacc. It is
proposed to develop a translator intermediate code (three-addresses) for a small imperative language.
Synthesis stage: Analysis of the characteristics of some synthesis stage. Implementation issues. Oral
presentation to the rest of the group.

Practical exercises will be carried out individually or in groups of two or three people. In the case of group
work, each person will evaluate the participation in the activity of the rest of the group components.

Activities will be carried out in groups of two or three people. The evaluation of the activities will be
collaborative among all those attending the presentations. In addition, in each group, each person will
evaluate the participation in the activity of the rest of the group components.

Bibliography

References

[1] A.V. Aho, M. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley Series in Computer Science, Reading, Massachusetts. Second Edition. 2006.

[2] Dick Grune, Henri E. Bal, Ceriel J. H. Jacobs, Koen G. Langendoen. Modern Compiler Design. Jonh
Wiley and Sons, England, 2000.

[3] Andrew W. Appel, Maia Ginsburg. Modern Compiler Implementation in C. Cambridge University Press,
1998.

[4] John Levine. Flex & bison: Text Processing Tools. O'Reilly, 2009.

[5] Reinhard Wilhelm, Helmut Seidl, Sebastian Hack: Compiler Design - Syntactic and Semantic Analysis.
Springer 2013.

[6] Helmut Seidl, Reinhard Wilhelm, Sebastian Hack: Compiler Design - Analysis and Transformation.
Springer 2012.

[7] Reinhard Wilhelm, Helmut Seidl: Compiler Design - Virtual Machines. Springer 2010

Tools:

Flex: http://flex.sourceforge.net/
Yacc: http://www.gnu.org/software/bison/

JFLAP: http://www.jflap.org/jflaptmp/

JFlex: http://jflex.de/

Cup: http://www2.cs.tum.edu/projects/cup/

Ant: http://ant.apache.org/

ANTLR: http://www.antlr.org/

https://pypi.org/project/ply/

https://www.haskell.org/alex/

https://www.haskell.org/happy/

LANGUAGE PROCESSING ALGORITHMS 2022-23

http://www.informatik.uni-trier.de/%7Eley/pers/hd/w/Wilhelm:Reinhard.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/h/Hack:Sebastian.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/w/Wilhelm:Reinhard.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/h/Hack:Sebastian.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/w/Wilhelm:Reinhard.html

LANGUAGE PROCESSING ALGORITHMS 2022-23

