

DEGREE CURRICULUM ADVANCED PROGRAMMING IN ARTIFICIAL INTELLIGENCE

Coordination: ARGELICH ROMA, JOSEP
Academic year 2020-21

ADVANCED PROGRAMMING IN ARTIFICIAL INTELLI... 2020-21

Subject's general information

Subject name	ADVANCED PROGRAMMING IN ARTIFICIAL INTELLIGENCE			
Code	102038			
Semester	2nd Q(SEMESTER) CONTINUED EVALUATION			
Typology	Degree	Course	Character	Modality
	Bachelor's Degree in Computer Engineering	3	COMPULSORY	Attendancebased
Course number of credits (ECTS)	6			
Type of activity, credits, and groups	Activity type	PRALAB	TEORIA	
	Number of credits	3	3	
	Number of groups	1	1	
Coordination	ARGELICH ROMA, JOSEP			
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING			
Teaching load distribution between lectures and independent student work	6 ECTS $=25 \times 6$ $40 \%-->60$ hours $60 \% ~-->~$	ent work		
Important information on data processing	Consult this link for more information.			
Language	English			

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
ARGELICH ROMA, JOSEP	josep.argelich@udl.cat	3,6	
PLANES CID, JORDI	jordi.planes@udl.cat	3,6	

Subject's extra information

This course will delve into aspects of computing (Computational Science, ACM-IEEE CV-2008) and artificial intelligence (Intelligent Systems, ACM-IEEE CV-2008), guiding to an applied aspect, since each lesson will work with a different tool, solving problems.

To follow this subject properly some previous knowledge on computer programming, logics, and artificial intelligence are recommended.

Learning objectives

- Understanding the different techniques and algorithms that are more commonly used in local search.
- Identifying problems where they can apply the local search techniques efficiently.
- Designing and implement local search algorithms for the Satisfiability and Maximum Satisfiability problems.
- Understanding how to evaluate the several implementations of algorithms to solve some problem in a neutral way.
- Knowing the different techniques and systematic search algorithms.
- Identifying problems which apply systematic search techniques.
- Designing and implement systematic search algorithms for Boolean satisfiability problem and maximum satisfiability .

Competences

Strategic Competences of the UdL

CT2. Mastering a foreign language, especially English.
CT3. Training Experience in the use of the new technologies and the information and communication technologies.
Cross-disciplinary competences
EPS6. Capacity of analysis and synthesis.

Specific competences

GII-C3. Capacity to evaluate the computational complexity of a problem, to know the algorithmic strategies that can drive to its solving and recommend, develop and implement the one which guarantee the best performance in accordance with the requirements.
GII-C4. Capacity to understand the basics, paradigms and techniques of the intelligent systems and analyse, design and build systems, services and computer applications that use these techniques in any field of application. GII-C5. Capacity to acquire, obtain, formalise and represent the human knowledge in a computable form to solve problems by means of a computer system in any field of application, particularly in the ones related with computation, perception and performance in environments or intelligent surroundings.

ADVANCED PROGRAMMING IN ARTIFICIAL INTELLI... 2020-21

GII-C6. Capacity to develop and evaluate interactive systems and of presentation of complex information and its application to solve problems of design of computer-person interaction.
GII-C7. Capacity to know and develop techniques of computational learning and design and implement applications and systems that use them, including the ones devoted to automatic extraction of information and knowledge from big volumes of data.

Subject contents

1. Preliminaries

1.1. Reminder SAT and MaxSAT
2. The SAT problem
2.1. Sistematic and non-sistematic algorithms
2.2. SAT local search
2.3. Neighborhood search
2.4. Genetic algorithms
2.5. Problem generation
2.6. SAT sistematic search

3. The MaxSAT problem

3.1. Branch and bound
3.2. Oracle-based solving

4. Constraint programming

4.1. Bucket elimination
4.2. Consistency
4.3. Optimization

Methodology

Large groups

Lectures: exposition of subject contents orally by the teacher and with the help of notes and/or slides.
Problems: presentation of complex problems that the student tries to solve, followed by the solution proposed by the teacher.

Practices: application, on a practical level, of the contents given in the course.
Written tests: presential written test.

Development plan

Week	Description	Classroom Activity Big Group	Classroom/independent work
1	Lecture and problems	Lesson 1	$4 \mathrm{~h} / 6 \mathrm{~h}$
2	Lecture and problems	Lesson 2.1	$4 \mathrm{~h} / 6 \mathrm{~h}$
3	Lecture and problems	Lesson 2.2	$4 \mathrm{~h} / 6 \mathrm{~h}$
4	Lecture and problems	Lesson 2.3	$4 \mathrm{~h} / 6 \mathrm{~h}$
5	Lecture and problems	Lesson 2.4	$4 \mathrm{~h} / 6 \mathrm{~h}$

ADVANCED PROGRAMMING IN ARTIFICIAL INTELLI... 2020-21

Week	Description	Classroom Activity Big Group	Classroom/independent work
6	Lecture and problems	Lesson 2.5	$4 \mathrm{~h} / 6 \mathrm{~h}$
7	Lecture and problems	Lesson 2.6	$4 \mathrm{~h} / 6 \mathrm{~h}$
8	Practices	Presentation of practices	$4 \mathrm{~h} / 6 \mathrm{~h}$
9	Written tests	First mid-term exam	$2 \mathrm{~h} / 3 \mathrm{~h}$
10	Lecture and problems	Lesson 3	$4 \mathrm{~h} / 6 \mathrm{~h}$
11	Lecture and problems	Lesson 3	$4 \mathrm{~h} / 6 \mathrm{~h}$
12	Lecture and problems	Lesson 4	$4 \mathrm{~h} / 6 \mathrm{~h}$
13	Lecture and problems	Lesson 4	$4 \mathrm{~h} / 6 \mathrm{~h}$
14	Lecture and problems	Lesson 5	$4 \mathrm{~h} / 6 \mathrm{~h}$
15	Practices	Presentation of practices	$4 \mathrm{~h} / 6 \mathrm{~h}$
16	Written tests	Second mid-term exam	$2 \mathrm{~h} / 3 \mathrm{~h}$
17	Written tests	Second mid-term exam	
18		Study week	
19	Written tests	Recovery exam	

Evaluation

Acornym	Evaluation activities	Weighting	Minimum score	Group work	Compulsory	Recoverable
P1	Practice local search	35%	3	Yes	Yes	Yes (*)
T1	1st mid-term Exam	15%	3	No	Yes	Yes
P2	Critical lecture	10%	3	Yes	Yes	Yes (*)
P3	Practice DPLL	25%	3	Yes	Yes	Yes (*)
T2	2on mid-term Exam	15%	3	No	Yes	Yes
(*) Recoverable activity with penalization						

Final Score $=P 1$ * $0.35+T 1$ * $0.15+\mathrm{P} 2$ * $0.1+\mathrm{P} 3$ * $0.25+\mathrm{T} 2$ * 0.15
In order to pass the course, the minimum grade for all activities and exams must be greater or equal to 3 (out of 10).

Bibliography

Basic bibliography

- Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh (Eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications 185 IOS Press 2009
- Rina Dechter: Constraint processing. Elsevier Morgan Kaufmann 2003

