

DEGREE CURRICULUM DISTRIBUTED COMPUTING AND APPLICATIONS

Coordination: CORES PRADO, FERNANDO

Academic year 2022-23

DISTRIBUTED COMPUTING AND APPLICATIONS 2022-23

Subject's general information

DISTRIBUTED COMPUTING AND APPLICATIONS
102027
2nd Q(SEMESTER) CONTINUED EVALUATION

Degree	Course	Character	Modality
Bachelor's Degree in Computer Engineering	3	COMPULSORY	Attendance- based
Bachelor's Degree in Computer Engineering	3	OPTIONAL	Attendance- based

6
credits (ECTS)
Type of activity, credits, and groups

Coordination

Activity type	PRALAB	TEORIA
Number of credits	3	3
Number of groups	1	1

Department
Teaching load distribution between lectures and
independent student work

Important information
on data processing

Language

Distribution of credits
CORES PRADO, FERNANDO
COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING
6 ECTS $=25 \times 6=150$ hours
40%-> 60 classroom hours
$60 \%->90$ hours of autonomous student work

Consult this link for more information.

Preferably in Spanish, in English if there is a foreign student.
Fernando Cores 6

DISTRIBUTED COMPUTING AND APPLICATIONS 2022-23

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
CORES PRADO, FERNANDO	fernando.cores@udl.cat	6	To be arranged by email

Subject's extra information

The course is eminently practical, so work practices and will have an important weight. Basically we work with two languages, C for parallel programming and Java for distributed objects (RMI). However, when we talk of distributed applications, as important as the program itself is the design of the application, which also intensively apply the concepts of software engineering.

To continue the course is essential for students to have good fundamentals and C programming Java. It is much harder, learn to develop distributed programs and parallel sequential programming if not previously mastered. In the course it is assumed that students are able to design, develop and debug sequential applications of medium difficulty without much trouble.

Learning objectives

- Introduce the basic concepts on Distributed Computing and the organisation of distributed systems.
- Provide an overview of the main architectures of Distributed Computing and his impact on the information technologies.
- Assimilate the fundamental principles and the distinct types of underlying models of Distributed Computing.
- Know the main paradigms of Distributed Computing and understand his strong points, his disadvantages and main fields of application.
- Comprise the technological challenges that represent the utilisation, the design and the implementation of the distributed systems.
- Provide an overview of the distributed systems, analysing different cases of study and applying them to solve real problems in different fields of Distributed Computing.
- Develop the skills of design and analysis of distributed systems that help to comprise, evaluate the quality the solutions proposed
- Encourage the adoption of the distributed model for the resource sharing on large scale, in a transparent form and independently of his physical location.

Competences

Strategic Competences of the UdL:

- CT2.Mastering a foreign language, especially English.
- CT3. Training Experience in the use of the new technologies and the information and communication technologies.

Cross-disciplinary competences:

- EPS11. Capacity to understand the needs of the user expressed in a no technical language.

Specific Competences:

- TI2. Capacity to choose, design, deploy, integrate, evaluate, build, manage, explode and keep the hardware, software and network technologies inside the cost and quality requirements.
- TI5. Capacity to select, deploy, integrate and manage systems of information that satisfy the needs of the organisation, within the cost and quality requirements.

DISTRIBUTED COMPUTING AND APPLICATIONS 2022-23

- TI6. Capacity to conceive systems, applications and services based in network technologies, including Internet, web, e-commerce, multimedia, interactive services and mobile computation.

Subject contents

1. Introduction to the Distributed Computing
2. Definitions and concepts
3. Distributed Computing Challenges
4. Types of Distributed Systems
5. Distributed Computing systems
6. Distributed Information systems
7. Distributed Embedded systems.
8. Distributed Systems Architectures
9. Paradigms of Distributed Computing
10. Message passing
11. Client-server
12. Peer-to-Peer
13. Messages systems
14. RPC (Remote Procedure Call)
15. Distributed Objects
16. Mobile agents
17. Distributed Objects
18. Introduction
19. Paradigm of distributed objects
20. RMI: Remote method invocation
21. RMI Advanced
22. Callbacks
23. Security Management in RMI
24. Hardware and Software of Parallel Computing
25. Parallel architectures
26. Networks of interconnection
27. Clusters
28. Job Queues
29. Design of parallel algorithms
30. Introduction to parallel programming
31. Performance of parallel applications
32. Design of parallel applications
33. Cases of Study
34. Parallel programming
35. The message passing model
36. The message passing interface
37. Basic routines
38. Point-to-point communications
39. Collective communications
40. Derived data-types
41. Routines for groups and communicators administration
42. Virtual topologies
43. MPI- 2 and MPI -3
44. Cases of study

Methodology

Theory Sessions (3 credits)

- Lecture: classes based on notes and transparencies where the concepts of the subject will be presented.
- Problems: The concepts of the subject will work through a series of exercises to be resolved collaboratively

DISTRIBUTED COMPUTING AND APPLICATIONS 2022-23

and help assimilate key concepts.

- Use Cases: It will apply the techniques seen in class to real examples and their impact on application performance will be analyzed.

Laboratory Sessions (3 credits)

- Tutorials and personalized monitoring by groups of practices.
- Laboratory: technologies and APIs for distributed programming will be presented and worked through tutorials and examples.
- Problems: Making and correcting exercises related to both the theoretical and practical part of the course.

Autonomous work:

- The homework exercises and practices will be completed outside of class time.
- Forums Tool. In this space the student can raise doubts regarding the contents seen in the Theory and Laboratory sessions as well as pose all kind of doubts about the project. All students are encouraged to participate in resolving the doubts of their peers. Teachers participate to clarify or resolve those doubts that have no answer from students.

Development plan

Week	Description	Classroom Activity GG	Classroom Activity GM	Autonomous work activity
1	Presentation Introduction	Subject presentation	T1: Introduction of Distributed Computing	Study literature and the program
2	Introduction	T1: Introduction of Distributed Computing Problems: Distributed computing challenges	T1: Introduction of Distributed Computing	Problems: Challenges
3	Introduction	T1: Introduction of Distributed Computing	T1: Introduction of Distributed Computing	Problems: Challenges
4	Distributed Objects	Problems: Distributed systems requirements \& paradigms	T2: Distributed Objects and Remote Invocation Tutorial: RMI	Problems: Paradigms
5	Distributed Objects	T2: Distributed Objects and Remote Invocation Practice 1: Presentation	T2: Distributed Objects and Remote Invocation Tutorial: RMI	RMI Practice 1
6	Distributed Objects Parallel Computing	T2: Distributed Objects and Remote Invocation Tutorial: RMI	T3: Parallel Computing Hardware \& Software	RMI Practice 1
7	Parallel Computing	T3: Parallel Computing Hardware \& Software Tutorial: SGE	T3: Parallel Computing Hardware \& Software Tutorial: SGE	Practice 1 Tutorial: SGE
8	Parallel Computing	T3: Parallel Computing Hardware \& Software Tutorial: SGE	Practice 1: Implementation	Practice 1 Tutorial: SGE
9		$1{ }^{\text {er }}$ Partial		Study
10	Design of parallel applications	T4: Design of parallel algorithms	T4: Design of parallel algorithms Practice 2: Presentation	Practice 2
11	Design of parallel applications	T4: Design of parallel algorithms	Problems: Parallel programs design	Practice 2 Problems: Design

12	Parallel programming	T5: Parallel programming Tutorial: MPI	T5: Parallel programming Tutorial: MPI Practice 2: Design delivery	Practice 2

Evaluation

Table. Assessment Activities

Acr.	Assessment activity	Weighting	Minimum Grade	In Group	Mandatory	Recoverable
P1	1st Partial Exam	20\%	NO	NO	YES	YES
P2	2nd Partial Exam	20\%	NO	NO	YES	YES
PRA	Practices	30\%	4	NO	YES	YES
WRK	Works/Tutorials	25\%	NO	YES/NO	NO	NO
PCL	Class participation	10\%	NO	NO	NO	NO
It must be approved all practices individually. A practice is considered suspended if fails to reach 4.						
FinalGrade $=0.20 * P 1+0.20 * P 2+0.30 * P R A+0.25 * W R K+0.10 * P C L$						

The subject approves with a final makr upper or equal to 5 and having done properly the laboratory practices (all they with at least a mark of 4)

The final mark for the subject it is obtained from the pondered sum of the marks of the two examinations and the practices plus the cllass participation marks and the continued assessment.

The subject has two partial examns, each one of them with a weight of 20% in the final mark. These exams are mandatory.

The realisation and the overcoming of the laboratory practices is mandatory to approve the subject. The practices will be evaluated with a note that will represent 30% of the final note of the subject. The copy of any one of the practices of the subject will involve suspending the whole practices and the subject.

It does not exist minimum marks in the written examns to obtain the final mark of the subject. Only it exists a minimum note (4) for the laboratory practices.

DISTRIBUTED COMPUTING AND APPLICATIONS 2022-23

Bibliography

Basic Bibliography:

- Coulouris G, Dollimore J., Kindberg T.: "Sistemas distribuidos: Conceptos y diseño"; Addison-Wesley, 2001.
- M.L. Liu, "Computación distribuida". Edt. Addison Wesley, 2004
- Peter Pacheco, "An Introduction to Parallel Programming", Morgan Kaufmann, 2011.

Extended Bibliography:

- M. Ben-Ari, "Principles of Concurrent and Distributed Programming", Addison-Wesley, 2nd Edition, 2006
- Rajkumar Buyya: "High Performance Cluster Computing: Architectures and Systems", Edt. Pearson Education; 1st edition 1999
- Rajkumar Buyya: "High Performance Cluster Computing: Programming and Applications", Volume 2 , Edt. Prentice Hall, 1st edition 1999.

