

DEGREE CURRICULUM ARTIFICIAL INTELLIGENCE

Coordination: ANSOTEGUI GIL, CARLOS JOSE

Academic year 2023-24

Subject's general information

Subject name Code	ARTIFICIAL INTELLIGENCE 102020					
Semester	1st Q(SEMESTER) CONTINUED EVALUATION					
Typology	Degree Course Character		ter	Modality		
	Bachelor's Degree in Computer Engineering		3	COMPULSORY		Attendance- based
	Double bachelor's degree: Degree in Computer Engineering and Degree in Business Administration and Management		JLSORY	Attendance- based		
	Master's Degr Informatics Er	ree in ngineering		COMPLEMENTARY TRAINING		Attendance- based
Course number of credits (ECTS)	6					
Type of activity, credits, and groups	e of activity, credits, I groups Activity type Number of credits 3			TEORIA		
				3		
	Number of groups	2		1		
Coordination	ANSOTEGUI GIL, CARLOS JOSE					
Department	COMPUTER ENGINEERING AND DIGITAL DESIGN					
Teaching load distribution between lectures and independent student work	6 ECTS = 25*6 = 150 working hours. 40%> 60 in-class hours. 60%> 90 autonomous work hours.					
Important information on data processing	Consult <u>this link</u> for more information.					
Language	Catalan / Spanish					

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
ANSOTEGUI GIL, CARLOS JOSE	carlos.ansotegui@udl.cat	0	
GARRALDA BARRIO, MARIANO		3	
GARRALDA BARRIO, MARIANO		1,5	
PON FARRENY, JOSEP	josep.pon@udl.cat	4,5	

Subject's extra information

For questions or related issues, it is recommended to send an email to the teachers of the subject.

Learning objectives

- Design, implement and evaluate uninformed and informed search algorithms describing space and time complexities.
- Select and implement heuristic and evaluation functions for search algorithms.
- Evaluate and implement algorithms for supervised and unsupervised learning.
- Select the most appropriate technique of supervised learning for a given domain.
- · Abstract and represent search problems.
- Optimize implementations of search algorithms.
- Optimize implementations of supervised learning algorithms.
- Write documents describing the architecture, design and implementation of a component of an intelligent system.

Competences

Degree-specific competences

• GII-CRI15: Knowledge and application of the main principles and basic techniques of intelligent systems and their practical application.

Degree-transversal competences

- EPS12: Be motivated by quality and continual improvement.
- EPS6: Capacity of analysis and synthesis.

Subject contents

The course content is as follows:

- 1. Introduction to artificial intelligence
- 2. Search algorithms and basic schemes: uninformed and informed search
 - Uninformed search: DFS, BFS, IDS
 - Informed search: UCS, BestH, A*

3. Machine Learning: supervised and unsupervised

- Supervised learning: Bayesian learning, decision trees
- Unsupervised learning: hierarchical clustering, k-means.

Methodology

Every week the student attends to a 2-hour Large Group class and to a 2-hour Middle Group class.

Medium Group classes take place in a laboratory.

In Large Group classes we present the topics listed into the contents section. They incorporate illustrative examples and problems to be solvd in the laboratory classes.

In Medium Group classes we present problems and the proposed solutions are discussed .

In Medium Group classes we also present and discuss the lab exercises to be done.

The theoretical classes In laboratory classes the proposed problems are resolved. The algorithms presented in the lecture are also implemented. In a first phase, the student watches the teacher how to implement an algorithm and how to evaluate its correctness and efficiency. In a second phase the student begins to solve the current laboratory activity.

The autonomous work of the student consists of solving the proposed problems and lab exercises.

The programming language is Python. Code quality is an important aspect .

Development plan

Week	Description	Classroom Activity GG	Classroom Activity GM	Autonomous work activity
1	Introduction to artificial intelligence	T1- Introduction to artificial intelligence	Course introduction Tutorial python	Consult bibliography, program, and python tutorial
2	Uninformed search	T2- Search algorithms	Tutorial Python Presentation of Practice1 (P1)	Python tutorial
3	Uninformed search	HOLIDAY	Problems T2	P1 Problems T2
4	Uninformed search	T2- Search algorithms	P1	P1 Problems T2

5	Informed search	T2- Search algorithms	HOLIDAY	P1 Problems T2
6	Informed Search	T2- Search algorithms	P1	P1 Problems T2
7	Informed Search	T2- Search algorithms	Delivery P1 Resolution of doubts T2-T3	Problems T2
8	Informed Search	T2- Search algorithms	HOLIDAY	Problems T2
9		1 st Partial		Study
10	Supervised Learning	T3- Aprenentatge automàtic	Problems T3	Problems T3
11	Supervised Learning	T3- Automatic Learning	Presentation of Practice3 (P2)	P2 Problems T
12	Supervised Learning	T3- Automatic Learning	P2 Problems T3	P2 Problems T3
13	Supervised Learning	HOLIDAY	HOLIDAY	P2 Problems T3
14	Unsupervised Learning	T3- Automatic Learning	P2 Problems T3	P2 Problems T3
15	Unsupervised Learning	T3- Automatic Learning	Delivery P2 Resolution of doubts T3	Problems
16		2 nd Partial		Study
17		2 nd Partial		Study

Evaluation

Table. Assessment Activities

Acr.	Assessment activity	Weighting	Minimum Grade	In Group	Mandatory	Recoverable
PE1	1 st Partial Exam	25%	NO	NO	NO	NO
PE2	2 nd Partial Exam	25%	NO	NO	NO	NO
P1	Practice1	25%	NO	YES (<=2)	NO	NO
P2	Practice2	25%	NO	YES (<=2)	NO	NO
PCL	Class Participation	0.5 points	NO	NO	NO	NO

Final grade = 0,25*PE1 + 0,25*PE2 + 0,25*P1 + 0,25*P2 + 0.2*P3 + 0,05*PCL

Activity Written exam

Week 9

Percentage 25% Type Compulsory / Individual

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Design, implement and evaluate uninformed and informed search algorithms describing space and time complexities.
- Select and implement heuristic and evaluation functions for search algorithms.
- Abstract and represent search problems.
- Evaluate uninformed and informed search algorithms describing their space and time complexities

Activity Written exam

Weeks 16-17

Percentage 25% Type Individual

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Apply and evaluate complete and incomplete solvers for the satisfiability and maximum satisfiability problems.
- Evaluate complete and incomplete solvers for the satisfiability and maximum satisfiability problems.
- Model decision and optimization problems with the language of propositional logic.
- Evaluate and implement algorithms for supervised and unsupervised learning.
- Select the most appropriate technique of supervised learning for a given domain

Activity Laboratory activity

Week 8

Percentage 20% Type Individual or Group

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Design, implement and evaluate uninformed and informed search algorithms describing space and time complexities.
- Select and implement heuristic and evaluation functions for search algorithms.
- · Evaluate uninformed and informed search algorithms describing their space and time complexities
- Write documents describing the architecture, design, and implementation of a component of an intelligent system.

Activity Laboratory activity

Percentage 20% Type Individual or Group

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Evaluate and implement algorithms for supervised and unsupervised learning.
- Select the most appropriate technique of supervised learning for a given domain
- Write documents describing the architecture, design, and implementation of a component of an intelligent system.

Alternative evaluation (students who waive continuous evaluation):

Students who have the approval to be evaluated by alternative evaluation (see requirements and procedure in the evaluation regulations) will have to do the following activities.

- **Single exam** (100%): It can be improved. Date of the exam: the date of the realization of the 2nd Midterm Exam, defined by the EPS. This exam consists of a written test of the entire subject matter.
- Improvement of Single exam (100%): Date of the exam: the date of the realization of the Improvement Exam, defined by the EPS. The realization of the improvement exam does not condition the maximum grade achieved in the subject.

Bibliography

- Artificial Intelligence: A Modern Approach

Stuart. J. Russell and Peter. Norvig

Prentice Hall, 2009

- Essentials of Artificial Intelligence

Matt Ginsberg

Morgan Kaufmann Pub, 1993

- Handbook of Satisfiability

Biere, Armin and Heule, Marijn J. H. and van Maaren, Hans and Walsh, Toby

IOS Press, 2009

- Data Mining: Practical Machine Learning Tools and Techniques

Ian H. Witten and Eibe Frank

Morgan Kaufmann, 2005