

DEGREE CURRICULUM ARTIFICIAL INTELLIGENCE

Coordination: ANSOTEGUI GIL, CARLOS JOSE

Academic year 2022-23

Subject's general information

Subject name	ARTIFICIAL INTELLIGENCE					
Code	102020					
Semester	1st Q(SEMESTER) CONTINUED EVALUATION					
Typology	Degree		Course	Character		Modality
	Bachelor's Degree in Computer Engineering		3	COMPULSORY		Attendance- based
	Double bachelor's degree: Degree in Computer Engineering and Degree in Business Administration and Management		4	COMPULSORY		Attendance- based
	Master's Deg Informatics E			COMPLEMENTARY TRAINING		Attendance- based
Course number of credits (ECTS)	6					
Type of activity, credits, and groups				TEORIA		
			3		3	
				1		
Coordination	ANSOTEGUI GIL, CARLOS JOSE					
Department	COMPUTER SCI	ENCE AND IN	DUSTRIAL	ENGINE	ERING	
Teaching load distribution between lectures and independent student work	6 ECTS = 25*6 = 150 working hours. 40%> 60 in-class hours. 60%> 90 autonomous work hours.					
Important information on data processing	Consult this link for more information.					
Language	Catalan / Spanish					

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
ALÒS PASCUAL, JOSEP	josep.alos@udl.cat	3	
ANSOTEGUI GIL, CARLOS JOSE	carlos.ansotegui@udl.cat	0	
TORRES MONTIEL, EDUARD	eduard.torres@udl.cat	6	

Subject's extra information

For questions or related issues, it is recommended to send an email to the teachers of the subject.

Learning objectives

- Design, implement and evaluate uninformed and informed search algorithms describing space and time complexities.
- Select and implement heuristic and evaluation functions for search algorithms.
- Apply and evaluate complete and incomplete solvers for the satisfiability and maximum satisfiability problems.
- Evaluate and implement algorithms for supervised and unsupervised learning.
- Select the most appropriate technique of supervised learning for a given domain.
- Model decision and optimization problems with the language of propositional logic.
- Abstract and represent search problems.
- Optimize implementations of search algorithms.
- Optimize encodings into the SAT and MaxSAT formalisms.
- Optimize implementations of supervised learning algorithms.
- Write documents describing the architecture, design and implementation of a component of an intelligent system.

Competences

Degree-specific competences

• GII-CRI15: Knowledge and application of the main principles and basic techniques of intelligent systems and their practical application.

Degree-transversal competences

- EPS12: Be motivated by quality and continual improvement.
- EPS6: Capacity of analysis and synthesis.

Subject contents

The course content is as follows:

- 1. Introduction to artificial intelligence
- 2. Search algorithms and basic schemes: uninformed and informed search

Uninformed search: DFS, BFS, IDS
Informed search: UCS, BestH, A*

- 3. Constraint Programming: Satisfiability and Maximum Satisfiability
 - Modelling problemas as MaxSAT instances
 - Solvers for MaxSAT instances
- 4. Machine Learning: supervised and unsupervised
 - Supervised learning: Bayesian learning, decision trees
 - Unsupervised learning: hierarchical clustering, k-means.

Methodology

Every week the student attends to a 2-hour Large Group class and to a 2-hour Middle Group class.

Medium Group classes take place in a laboratory.

In Large Group classes we present the topics listed into the contents section. They incorporate illustrative examples and problems to be solvd in the laboratory classes.

In Medium Group classes we present problems and the proposed solutions are discussed .

In Medium Group classes we also present and discuss the lab exercises to be done.

The theoretical classes In laboratory classes the proposed problems are resolved. The algorithms presented in the lecture are also implemented. In a first phase, the student watches the teacher how to implement an algorithm and how to evaluate its correctness and efficiency. In a second phase the student begins to solve the current laboratory activity.

The autonomous work of the student consists of solving the proposed problems and lab exercises.

The programming language is Python. Code quality is an important aspect.

Development plan

Week	Description	Classroom Activity GG	Classroom Activity GM	Autonomous work activity
1	Introduction to artificial intelligence	T1- Introduction to artificial intelligence	Course introduction Tutorial python	Consult bibliography, program, and python tutorial
2	Uninformed search	T2- Search algorithms	Tutorial Python Presentation of Practice1 (P1)	Python tutorial

				P1
3	Uninformed search	HOLIDAY	Problems T2	Problems T2
4	Informed search	T2- Search algorithms	P1	P1 Problems T2
5	Informed search	T2- Search algorithms	HOLIDAY	P1 Problems T2
6	Informed Search	T2- Search algorithms	P1	P1 Problems T2
7	Maximum Satisfiability	T3- Constraint Programming	P1	P2 Problems T3
8	Maximum Satisfiability	T3- Constraint Programming	Delivery P1 Presentation of Practice2 (P2) P2 Resolution of doubts T2-T3	P2 Problems T3
9		1 st Partial		Study
10	Maximum Satisfiability / Supervised Learning	T4- Aprenentatge automàtic	P2 Problems T3	P2 Problems T3
11	Supervised Learning	T4- Automatic Learning	Delivery P2 Presentation of Practice3 (P3)	P3 Problems T4
12	Supervised Learning	T4- Automatic Learning	P3 Problems T4	P3 Problems T4
13	Supervised Learning	T4- Automatic Learning	HOLIDAY	P3 Problems T4
14	Unsupervised Learning	T4- Automatic Learning	P3 Problems T4	P3 Problems T4
15	Unsupervised Learning	HOLIDAY	Delivery P3 Resolution of doubts T3-T4	Problems
16		2 nd Partial		Study
17		2 nd Partial		Study

Evaluation

Table. Assessment Activities

Acr.	Assessment activity	Weighting	Minimum Grade	In Group	Mandatory	Recoverable
PE1	1 st Partial Exam	25%	NO	NO	NO	NO
PE2	2 nd Partial Exam	25%	NO	NO	NO	NO
P1	Practice1	20%	NO	YES (<=2)	NO	NO

P2	Practice2	10%	NO	YES (<=2)	NO	NO	
P3	Practice3	20%	NO	YES (<=2)	NO	NO	
PCL	Class Participation	0.5 points	NO	NO	NO	NO	
Final grade = 0,25*PE1 + 0,25*PE2 + 0,2*P1 + 0,1*P2 + 0.2*P3 + 0,05*PCL							

Activity Written exam

Week 9

Percentage 25% Type Compulsory / Individual

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Design, implement and evaluate uninformed and informed search algorithms describing space and time complexities.
- Select and implement heuristic and evaluation functions for search algorithms.
- Abstract and represent search problems.
- Evaluate uninformed and informed search algorithms describing their space and time complexities

Activity Written exam

Weeks 16-17

Percentage 25% Type Individual

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Apply and evaluate complete and incomplete solvers for the satisfiability and maximum satisfiability problems.
- Evaluate complete and incomplete solvers for the satisfiability and maximum satisfiability problems.
- Model decision and optimization problems with the language of propositional logic.
- Evaluate and implement algorithms for supervised and unsupervised learning.
- Select the most appropriate technique of supervised learning for a given domain

Activity Laboratory activity

Week 8

Percentage 20% Type Individual or Group

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Design, implement and evaluate uninformed and informed search algorithms describing space and time complexities.
- Select and implement heuristic and evaluation functions for search algorithms.
- Evaluate uninformed and informed search algorithms describing their space and time complexities
- Write documents describing the architecture, design, and implementation of a component of an intelligent system.

Activity Laboratory activity

Week 11

Percentage 10% Type Individual or Group

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Apply and evaluate complete and incomplete solvers for the satisfiability and maximum satisfiability problems.
- Model decision and optimization problems with the language of propositional logic.
- Write documents describing the architecture, design, and implementation of a component of an intelligent system.

Activity Laboratory activity

Week 15

Percentage 20% Type Individual or Group

Evaluation:

The activity will be evaluated over 10 points.

Objectives

- Evaluate and implement algorithms for supervised and unsupervised learning.
- Select the most appropriate technique of supervised learning for a given domain
- Write documents describing the architecture, design, and implementation of a component of an intelligent system.

- Artificial Intelligence: A Modern Approach

Stuart. J. Russell and Peter. Norvig

Prentice Hall, 2009

- Essentials of Artificial Intelligence

Matt Ginsberg

Morgan Kaufmann Pub, 1993

- Handbook of Satisfiability

Biere, Armin and Heule, Marijn J. H. and van Maaren, Hans and Walsh, Toby

IOS Press, 2009

- Data Mining: Practical Machine Learning Tools and Techniques

Ian H. Witten and Eibe Frank

Morgan Kaufmann, 2005