
 

DEGREE CURRICULUM

SOFTWARE ENGINEERING
Coordination: SENDÍN VELOSO, MONTSERRAT

Academic year 2021-22

SOFTWARE ENGINEERING 2021-22



Subject's general information

Subject name SOFTWARE ENGINEERING

Code 102018

Semester 1st Q(SEMESTER) CONTINUED EVALUATION

Typology Degree Course Character Modality

Bachelor's Degree in
Computer Engineering

3 COMPULSORY
Attendance-
based

Double bachelor's
degree: Degree in
Computer Engineering
and Degree in Business
Administration and
Management

3 COMPULSORY
Attendance-
based

Master's Degree in
Informatics Engineering

COMPLEMENTARY
TRAINING

Attendance-
based

Course number of
credits (ECTS)

6

Type of activity, credits,
and groups

Activity
type

PRALAB TEORIA

Number of
credits

3 3

Number of
groups

2 1

Coordination SENDÍN VELOSO, MONTSERRAT

Department COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING

Teaching load
distribution between
lectures and
independent student
work

40% Presential (equivalent to 60h) 
60% Autonomous work (equivalent to 90h)

Important information
on data processing

Consult this link for more information.

Language Preferably Catalan (Spanish if any student shows dificulties with Catalan).

Distribution of credits Juan Manuel Gimeno Illa 4.5 
Montserrat Sendin Veloso 4.5

SOFTWARE ENGINEERING 2021-22

https://unidisc.csuc.cat/index.php/s/ljIirDLEOoUr5Rj


Teaching staff E-mail addresses
Credits
taught by
teacher

Office and hour of attention

SENDÍN VELOSO, MONTSERRAT montse.sendin@udl.cat 9

Subject's extra information

Compulsory subject of 3rd year (1st quarter) that belongs to the common studies in the computer science branch.

Matter: Analysis and Design of Applications.

RECOMMENDATIONS: We assume the student knows the concepts about object-oriented programming and data
structures teached in Programming II and Data Structures.
 

Learning objectives

Knowing the conceptual basis and the different aspects of the discipline, among other the software lifecycle
process model
Apply the Use Case technique
Specifying in a textual way the functional and non functional needs for a certain software system planned by
means of a statement and/or other inputs from the user
Developing the classes diagram for a certain software system following the Object Oriented Modeling
principles
Be familiar with a UML-based modeling tool
Understanding the concept of code as a something that evolves over time
Be able to program basic unit tests
Understanding the object oriented design fundamental principles
Recognizing the concept of responsibility as a fundamental one when planning an object oriented design

Competences

Cross-disciplinary competences

EPS-11: Capacity to understand the needs of the user expressed in a no technical language

Specific competences

GII-CRI2: Capacity to plan, conceive, deploy and direct projects, services and computer systems in all the
fields, leading his set up and his continuous improvement and evaluation his economic and social impact
GII-CRI12: Knowledge and application of the characteristics, functionalities and structure of the databases,
that allow their suitable use, and the design and the analysis and implementation of applications based in
them
GII-CRI13: Knowledge and application of the necessary tools for the storage, processing and access to the
Systems of information, including those based in web
GII-CRI16: Knowledge and application of the principles, methodologies and life cycle of the software
engineering
GII-CRI17: Capacity to design and evaluate person-computer interfaces that guarantee the accessibility and
usability of systems, services and computer applications.

Subject contents

SOFTWARE ENGINEERING 2021-22



Theme I - Introductory aspects

    1.1. Initial qüestions about the Software Engineering

    1.2. A little of history

    1.3. Software development process

    1.4. Software process models

    1.5. Conclusions

 

Theme II - Requirements Analisys

    2.1. Requirements specification

    2.2. The Use Cases technique

    2.3. A step more in the specification: the System Sequence Diagram

    2.4. Conclusions

 

Theme III - Domain Analisys

   3.1. Analisys Classes Diagram

   3.2. A step more in the domain analysis: the Contracts of the operations

   3.3. Conclusions

 

Theme IV - Introduction to Design and Unit Testing

   4.1. The need for code design

   4.2. The JUnit framework

 

Tema V - The SOLID principles

   5.1. Single responsibiliti principle

   5.2. Open-closed principle

   5.3. Liskov substitution principle

   5.4. Interface segregation principle

   5.5. Dependency inversion principle

 

Tema VI - Responsibility based design

   6.1. The concept of responsibility

   6.2. The GRASP patterns of responsibility assignement

SOFTWARE ENGINEERING 2021-22



Methodology

Big-size Groups: Masterly Classes (3 credits)

Theorical part: Supported by snapshots and/or specific notes
Practical application part: Always working over examples. A problems collection is available. In class
concrete problems are being solved. The solutions are being delivered along the semester
Methodology: Flipped classroom (to reverse the traditional method)
Active participation of students
•    We will tend towards active learning, where the student is the centre
•    Participatory and dynamic sessions (incorporation of questions / surveys, questions to be discussed,
review of points explored, contribution of ideas, etc.)
               => It requires commitment from the student
•    Previous to the class:

Revision of the specific material (material, links, videos) on your own

•    Beginning of the class:

Polls and reinforcement of revised contents
 

Medium-size Groups: Laboratory Classes (3 credits)

Guided classes and personalized monitoring
UML Modeling tool usage: ArgoUML and/or Visual Paradigm
Control version tools with GIT and testing framework with JUnit
Progressive work regarding a certain practical statement, which will simulate the software project
development as practical application of the subject contents

Autonomous work (non presential):

Practical work will be completed during no presential hours
Highly recommended to the student: solving the problems from the collection, in order to get feedback
from the teacher

The avaluation system (detailed in el corresponding section) is composed of: 1) writen tests (l2 partial exams);
and 2) practices (to develop in group).

Development plan

 

Week Theory (GG) Laboratory (LG) Autonomous Work

1
Subject presentation
T1: Introductory
aspects

T1: Introductory aspects Study

2
T1: Introductory
aspects

T1: Introductory aspects Study

3

T2: Requirements
analysis
Requirements
specification

T2: Requirements analysis
Requirements specification
 

Study and problems solving
(Analysis problems collection)

SOFTWARE ENGINEERING 2021-22



4

T2: Requirements
analysis.
The Use Cases
technique.
Problems

UML Modeling usage
Use Cases technique practical
application

Study, problems solving
(Analysis problems collection) and Analysis
practice development

5

T2: Requirements
analysis
Use Case
Specificaction
Problems

Application of the Use Cases
technique to the practice drafting
T2: Requirements analysis. System
Sequence Diagrams
Requirements analysis (1rst part)
Delivery

6
T3: Domain analysis
Object Oriented
Modeling technique

SSD application to the practice
drafting

Study, problems solving (Analysis problems
collection)
and Analysis practice development

7

T3: Domain analysis
Object Oriented
Modeling technique
Problems

UML Modeling usage
Practical application of the Object
Oriented Modeling technique

Study, problems solving (Analysis problems
collection)
and practice defelopment
Requirements analysis (2nd part) Delivery

8

T3: Domain analysis
Object Oriented
Modeling technique
Problems

Construction of the Domain Model
for the practice drafting

Study, problems solving (Analysis problems
collection)
and Domain analysis practice development

9 First midterm Development of the Domain analysis practice

10

T3: Domain analysis
Contracts of
operations
T4: Introduction to
Design
Test concept

Simple testing problems
Study, problems solving (Testing problems
collection)
and Domain analysis practice development

11
T4: JUnit
Substitute objects

Testing with substitutions problems
Study and problems solving (Testing problems
collection)
Domain Analysis and Contracts Delivery

12
T5: Principis SOLID
Intro, OCP & LSP

 Testing problems. Advanced
aspects of JUnit

Study, problems solving (Testing problems
collection) and testing practice development

13
T5: Principis SOLID
SRP, ISP & DIP

Git usage
Study, problems solving (Testing problems
collection) and testing practice development

14
T6: Patrons GRASP
Responsability
concept

Git usage
Study, problems solving (Testing problems
collection) and testing practice development

15
T6: GRASP Patrons
Expert, Creator, Low
Coupling

T6: GRASP Patrons
High cohesion, Controller

Study and testing practice development

16 Second midterm Testing practice development

17 Second midterm Testing Delivery

18 Tutorization  

19 Recovery  

Evaluation

SOFTWARE ENGINEERING 2021-22



Activt. Description Weight Mínimum Grade In group Presential Mandatory Recoverable

Part1 First midterm 25% 3,0 No Yes Yes Sí

Part2 Second midterm 25% 3,0 No Yes Yes Sí

Actv1 Requirements Analysis 20% No Yes No Yes No

Actv2 Domain Model and Contracts 10% No Yes No Yes No

Actv3 Unitary testing 20% No Yes No Yes No

Particp Participation 10% No No Yes No No

 

Final grade = 0,25 * Part1 + 0,25 * Part2 + 0,20 * Actv1 + 0,10* Actv2 + 0,20 * Actv3 + 0,10 * Particp

Subject is passed if final grade is greater or equal than 5,0 and all midterms are above the minimum
required.
All the compulsory activities are required for succeding the subject.
The optional part is valorated in 1 point. In case of taking part of the activities proposed in class sessions,
subject is scored over 11 (1 extra point).

Other considerations and criteria:

Type of exams: concept fixation and problems solving.
For all activities: programmed deliveries, unmovable dates.
When any of the partial exams is below the minimum grade, the student must do the recovey exam of
the corresponding midterm/s.

If even though, one or both midterms are below the minimum required, or below 5 in weighing, the
final grade will be 4,5 at most.

The recovery exam is a chance to obtain the subject success (current grade < 5), and also to improve the
mark (taking into account that the mark obtained in it is the one that prevails).

In any case, in the recovery exam must be examined, at least, the midterm exam with the lower
grade.

Particip: The participation of the student in activities proposed additionally, to be developed during the
theoretical class sessions, will be scored up to 1 extra point in the mark. They can consist of: the
synthesis of the provided material, the contribution of ideas and intervention in debates, preparation of
micro-themes agreeded together, etc.. They will serve to dynamize the classes and encourage an active
participation, such as it is mentioned in the methodology.

Bibliography

Basic bibliography

Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
Iterative Development. Prentice-Hall, 2005  (3ª ed.)
Boni García: Mastering Software Testing with Junit 5. Packt, 2017

Complementary bibliography

Gerald Kotonya, Ian Sommerville: Requirements  Engineering: Processes and Techniques. Wiley, 1998      
Robert Martin: Agile Software Development: Principles, Patterns, and Practices, Prentice-Hall, 2002
Lasse Koskela, Effective Unit Testing. A guide for Java developers. Manning, 2013

 

SOFTWARE ENGINEERING 2021-22


