

DEGREE CURRICULUM INTRODUCTION TO PROGRAMMING II

Coordination: GIMENO ILLA, JUAN MANUEL

Academic year 2020-21

Subject's general information

Subject name	INTRODUCTION TO PROGRAMMING II					
Code	102001					
Semester						
Туроlоду	2nd Q(SEMESTER) CONTINUED EVALUATION					
Typology	Degree		Course	Character	Modality	
	Double bache in Computer I Degree in Bu and Manager	1	COMMON	Attendance- based		
	Bachelor's De Engineering	egree in Computer	1	COMMON	Attendance- based	
Course number of credits (ECTS)	6					
Type of activity, credits, and groups	Activity type	PRALAB		TEORIA		
	Number of 3 credits		3		3	
	Number of groups	4		1		
Coordination	GIMENO ILLA, JUAN MANUEL					
Department	COMPUTER SCIENCE AND INDUSTRIAL ENGINEERING					
Teaching load distribution between lectures and independent student work	20% on-site 20% virtual 60% autonomous work					
Important information on data processing	Consult <u>this link</u> for more information.					
Language	Preferably Catalan (Spanish if any student shows dificulties with Catalan).					
Distribution of credits	Xavier Domingo (6) Juan Manuel Gimeno (9)					

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
DOMINGO ALBIN, JAVIER JUAN	xavier.domingo@udl.cat	6	By appointment
GIMENO ILLA, JUAN MANUEL	juanmanuel.gimeno@udl.cat	9	By appointment

Subject's extra information

We assume the students have all the concepts of Introduction to Programming I as we build upon them into two directions: object-oriented programming and recursive design.

Learning objectives

- To apply the Object Oriented Programming paradigmn to simple problems.
- To use the basic Java file types
- To design simple recursive algorithms
- To use the Java standard documentation
- To use an Intengrated Development Environment

Competences

- Cross-disciplinary competences
 - EPS1: Capacity to solve problems and prepare and defence arguments inside the area of studies.
 - EPS5: Capacity of abstraction and of critical, logical and mathematical thinking.
 - **EPS9:** Capacity for unidisciplinary and multidisciplinary teamwork.
 - EPS12: To be motivated for the quality and steady improvement.
- Specific competences
 - **GII-FB3:** Capacity to understand and master the basic concepts of discreet mathematics, logical, algorithmic and computational complexity, and its application to solve engineering problems.
 - **GII-FB4:** Basic knowledge of the use and programming of computers, operating systems, databases and computer programs with applications in engineering.
 - **GII-FB5:** Knowledge of the structure, organisation, operation and interconnection of the computer systems, the basics of programming, and its application to solve engineering problems.
 - **GII-FB7:** Knowledge, design and efficient use of the types and data structure more suitable for solving a problem.
 - **GII-FB9:** Capacity to know, comprise and evaluate the structure and architecture of computers, as well as the basic components that conform them.

Subject contents

1. Introduction

- 1.1 From C to Java
- 1.2 The ACM Task Force Library

- 1.3 The main program
- 1.4 Using auxiliar functions
- 1.5 Arrays in Java
- 1.6 Strings in Java
- 2. Object Oriented Programming
 - 2.1 Objects and references
 - 2.2 Graphic classes in the ACM library
 - 2.3 The String class
 - 2.4 Class definition in Java
- 3. File processing
 - 3.1 Types of files
 - 3.2 Sequential text files
 - 3.3 Random access binary files
 - 3.4 MergeSort
- 4. Recursive design
 - 4.1 Function calls
 - 4.2 Thinking recursively
 - 4.3 Recursivity using cursors
 - 4.4 Binary search
 - 4.5 Multiple recursion

Methodology

Big Size Groups: Theory Classes (3 cretits)

- Theory: Classes supportted by handnotes
- Practical application: always working on concrete examples.

Mid Size Groups: Laboratory Classes (3 credits)

- Aimed to the resolution of practical cases by the students (there is a problems collection which includes exams from previous years)
- Personal tutoring of projects and difficulties.
- Use of an Integrated Development Environment.

Autonomous Work

- Software projects are done non-presentially.
- We recommend students to solve the problems in the collection to practice and get feedback from the teaching staff.

Development plan

Week	Big Size Group	Mid Size Group	Autonomous Work			
1	Presentation + From C to Java (1 to 3)	Netbeans	Study and problem solving			
2	From C to Java (rest)	Probs 3, 4 i 6	Study and problem solving			
3	Introduction to OOP (1 & 2)	Probs 1, 2, 5	Study and problem solving Project 1			
4	Introduction to OOP (3 & 4)	Probs 1, 2	Study and problem solving Project 1			
5	Introduction to OOP (5, 6 & 7)	Probs 2, 4, 5	Study and problem solving Project 1			
6	OOP Ampliation (8 & 9)	Probs 8, 9	Study and problem solving Project 2			
7	OOP Ampliation (10 & 11)	Probs 10, 11, 12	Study and problem solving Project 2			
8	OOP Ampliation (12 to 14)	Previous exams	Study and problem solving			
9	E	valuation				
10	File management in Java (1 to 3)	Javadoc	Project 2			
11	File management in Java (4 to 6)	Probs 2, 3, 4	Study and problem solving Project 2			
12	File management in Java (7 & 8)	Probs 5, 6, 7	Study and problem solving Project 3			
13	Recursive design (1 to 3)	Probs 8, 9 10	Study and problem solving Project 3			
14	Recursive design (4 to 6)	Probs 1 i 2	Study and problem solving Project 3			
15	Recursive design (9 & 10)	Probs 3, 4, 5 Previous exams	Study and problem solving			
16	Evaluation					
17	Evaluation					
18	Tutories	Study and problem solving Project 3				
19	Evaluation					

• Numbers in the second column correspond to the section in the handouts of the subject.

• Those in the third to the numbers in the associated problems collection.

Evaluation

	Acr	Activity	Weight	Minimum grade to pass	Mandatory	Recoverable
--	-----	----------	--------	-----------------------------	-----------	-------------

Acr	Activity	Weight	Minimum grade to pass	Mandatory	Recoverable
Ex1	1st Midterm	25%	4,0	YES	YES (with 2nd midterm)
Ex2	2nd Midterm	25%	4,0	YES	YES (with recovery exam with a max grade of 7)
Proj1	Project 1	15%	NO	NO	YES (at week 18 with a max grade of 5)
Proj2	Project 2	20%	NO	NO	YES (at week 18 with a max grade of 5)
Proj3	Project 3	15%	NO	NO	NO

Final Grade = 0,25 * Ex1 + 0,25 * Ex2 + 0,15 * Proj1 + 0,20 * Proj2 + 0,15 * Proj3

- Subject is passed if Final Grade is greater or equal than 5
- A passed 2nd midterm recovers a failed 2nd midterm
- First midterm garde is only taken into account if its greater than 2nd midterm (if not, the 2nd midterm grade is used)
- If the student has to take the recovery exam, the grade of the first term won't be taken into account and the maximum grade of theory will be 7
- If the student has to re-send the first or second project at the end of teh course, the project will get a maximun grade of 5.
- A project detected as a copy (or a non-original work) will be qualified with 0 and it won't be recoverable.

Bibliography

- Basic:
 - Handnotes (in spanish).
 - Eric S. Roberts, The Art & Science of Java: An Introduction to Computer Science, PearsonEducation, 2008. (hay una versión preliminar disponible en pdf).
 - Eric S. Roberts, Thinking Recuersively with Java, John Wiley & Sons, 2006.
- Additional:
 - ACM Java Task Force Library Documentation http://jtf.acm.org/
 - Kathy Sierra y Bert Bates, Head First Java, O'Reilly, 2003.
 - Jorge A. Villalobos y Rubby Casallas, Fundamentos de Programación. Aprendizaje Activo Basado en Casos. Pearson Pentice-Hall, 2006