

DEGREE CURRICULUM **BIOREACTORS**

Coordination: GARVIN ARNES, ALFONSO

Academic year 2019-20

Subject's general information

Subject name	BIOREACTORS						
Code	101620						
Semester	1st Q(SEMESTER) CONTINUED EVALUATION						
Туроlоду	Degree		Course	Cha	ıracter	Modality	
	Bachelor's Degree in Biotechnology		3	COMPULSORY		Attendance- based	
Course number of credits (ECTS)	6						
Type of activity, credits, and groups	Activity type	PRAULA			TEORIA		
	Number of credits	2.1			3.9		
	Number of groups 2			1			
Coordination	GARVIN ARNES, ALFONSO						
Department	FOOD TECHNOLOGY						
Teaching load distribution between lectures and independent student work	Contact hours: 60 Non-contact hours: 90						
Important information on data processing	Consult this link for more information.						
Language	Catalan: 80 Castilian: 20						
Office and hour of attention	Office: 2.2.15 Office hours: Request Phone: 973702907						

Teaching staff		Credits taught by teacher	Office and hour of attention
GARVIN ARNES, ALFONSO	alfonso.garvin@udl.cat	8,1	

Subject's extra information

Subject/matter in the overall curriculum

A great number of biotechnological processes have one or more steps of chemical reactions. Studying the chemical reactions allow to deepen in the bio-reactors design. From a technological point of view, enzymatic and microbial reactions are specially important. It is important to know the reaction rate concept and to use chemical kinetics to study not only the ideal bio-reactos but also the real reactors with a non-ideal flow.

Requirements for the subject

Pre-requirements: NO

Co-requirements: NO

Learning objectives

The student, after passing the subject, should be able to:

- Know all the ideal bio-reactors.
- Know the reaction rate concept and the different types of kinetic equations.
- Know how to get and solve the mathematical model of ideal bio-reactors, using the approach of mass and energy balances for any kinetic equation.
- Know how to use any kinetic equation in multiphase reactors.
- Know enzymatic and microbial reactions and how to obtain and solve the mathematical model in a bioreactor.
- Know how to use immobilized bio-catalyst.
- Know the most important non-conventional bio-reactors.
- Know how to obtain the flow model in a real reactor and its difference from ideal reactors (stirred tank and plug flow).
- Know how to use the flow model for a real reactor to obtain the conversion, average time and useful volume. Know how to justify the deviation from the ideality.

Competences

This subject is not taught in English. Please, check the available information in Catalan or Spanish. In case you need information in English, please contact the teaching staff of the subject.

Subject contents

This subject is not taught in English. Please, check the available information in Catalan or Spanish. In case you need information in English, please contact the teaching staff of the subject.

Methodology

This subject is not taught in English. Please, check the available information in Catalan or Spanish. In case you need information in English, please contact the teaching staff of the subject.

Development plan

This subject is not taught in English. Please, check the available information in Catalan or Spanish. In case you need information in English, please contact the teaching staff of the subject.

Evaluation

This subject is not taught in English. Please, check the available information in Catalan or Spanish. In case you need information in English, please contact the teaching staff of the subject.

Bibliography

Basic bibliography

Doran PM. 1998. *Principios de Ingeniería de los Bioprocesos*. Ed. Acribia Gòdia F, López J. 1998. *Ingeniería Bioquímica*. Ed. Síntesis Levenspiel O. 1986. *El Omnililbro de Reactores Químicos*. Ed. Reverté Mittal GS. 1992. *Food Biotechnology*. Technomic Publish, Co. Quintero R. 1981. *Ingeniería Bioquímica*. Ed. Alhambra

Further Bibliography

Atkinson B. 1975. *Biochemical Reactors*. Ed. Pion Bailey JE, OLLIS DF. 1986. *Biochemical Engineering Fundamentals*. Ed. McGraw-Hill Blanc HW; Clark DS. 1996. *Biochemical Engineering*. Ed. Marcel Dekker, New York Lee JM. 1991. *Biochemical Engineering*. Ed. Prentice Hall Van't Riet, Tramper J. 1991. *Basic Bioreactor design*. Ed. Marcel Dekker, New York