

DEGREE CURRICULUM BIOINFORMATICS

Coordination: VAQUEIRO DE CASTRO ALVES, RUI CARLOS

Academic year 2019-20

Subject's general information

Subject name	BIOINFORMATICS							
Code	101612							
Semester	1st Q(SEMESTER) CONTINUED EVALUATION							
Typology	Degree Course Character Mod							
	Bachelor's Degree in Biotechnology		3	TCOMPULSORY L		Attendance- based		
Course number of credits (ECTS)	6							
Type of activity, credits, and groups	Activity type	PRAULA			TEORIA			
	Number of credits 4				2	2		
	Number of groups	2		1	ſ			
Coordination	VAQUEIRO DE CASTRO ALVES, RUI CARLOS							
Department	BASIC MEDICAL SCIENCES							
Teaching load distribution between lectures and independent student work	55 Classroom Hours 100 Non Classroom hours							
Important information on data processing	Consult this link for more information.							
Language	Anglès							
Office and hour of attention	Center: Facultat de Medicina Department: Ciències Mèdiques Bàsiques Office: b.4.11.2 Visiting hours: 9:00-10:00 Phone: 973702425							

Teaching staff	E-mail addresses	Credits taught by teacher	Office and hour of attention
VAQUEIRO DE CASTRO ALVES, RUI CARLOS	rui.alves@udl.cat	7,2	
VILAPRIÑO TERRE, ESTER	ester.vilaprinyo@udl.cat	4,8	

Subject's extra information

Third year course for Bachelors of Biotechnology. It is taught in the first semester of the academic year. This course aims to provide students who already have basic training in biotechnology with knowledge to use bioinformatics and computational methods in the study of cellular processes responsible for normal and abnormal functioning of organisms that are important for applications biomedicine and biotechnology. This should enable them to think about scientific problems, develop strategies to solve those problems, and apply these strategies in a scientifically rigorous and appropriate manner. In addition to facilitating the acquisition of transversal competences, it is intended that students acquire skills regarding terminology and basic concepts of Bioinformatics and Computational Biology, both at the theoretical and practical levels. Also, they should become familiar with the methods and tools used in the area. Students will acquire communication and teamwork skills as well as skills in the use of ICT (Information and Communication) to obtain and manage information.

This course will also help students to acquire that ability to perform autonomous learning, and perform tasks independently and outside of the classroom.

Learning objectives

Students who pass the course must: (Knowledge objectives)

- Understand and apply the theoretical concepts specified in the program.
- Understand the basic scientific terminology and language related to bioinformatics and computational biology.
- Know how to use the concepts related to the subject matter to critically evaluate the various tools available to perform the same job and their limits.
- Know how to use the concepts related to the subject matter to carry out, evaluate, and interpret results of a given project.
- Learn to identify what tools to use once the biological problema is defined.
- Learn how to independently use these tools.
- · Know how to write scientific papers.
- Successfully carry out the work required for the evaluation of relevant concepts.
- Interpret the results and observations of research projects in bioinformatics. Students who pass the course should be able to: (Capacity objectives)
- Provide scientific training in all aspects related to biotechnology.
- Develop the skills and attitudes necessary to be able to act broadly in the area of biotechnology research.

- Provide future professionals extensive knowledge in basic sciences, techniques and methods of biomedical research and research management organization, legal and ethical aspects of research, public health, additional languages and other subjects.
- Recognise own limitations and the need to maintain and upgrade professional skills, paying particular attention to learning independently and continuously obtaining new knowledge, products and techniques in biotechnology, as well as being motivated for improving quality.
- Gain basic training in research, being able to formulate hypotheses, collect and interpret information to solve problems using the scientific method. Understand the importance and limitations of scientific thinking in biotechnology.

Competences

General Competences

Graduates in Biotechnology must:

- Know how to develop protocols and applications for biotechnology for the production of goods with human interest.
- Work in biotechnology companyies, in R&D, or in the manufacturing of bioproducts.
- Design projects by identifying innovative biotechnological applications, business ideas, work plans and implementation of new techniques and equipment.
- Communicate information, ideas, problems and solutions to both specialist and non-specialist audience.

Specific Competences (according to the study guide)

- 1 To be able to design simple studies, and analyze and interpret the results in accordance with the objectives of those studies.
- 2 Understand, critically evaluate how to use technologies and sources of clinical and biomedical dat; obtain, organize, interpret and communicate clinical, scientific and Health information.
- 3 To know how to apply and to perform the analysis of the structure and expression of the genome and cellular proteome.
- 4 Be able to use different bioinformatics tools to extract information from databases with regard to the structure and function of genes and proteins, and learn methods of comparing sequences and different genomes.
- 5 Understand the fundamentals of programming languages that allow the extraction of information from databases of genomic, proteomics and metabolomics.
- 6 Understand the concept of a mathematical model of a system and its role in the evaluation of the hypothesis on the integration of various elements of the system that is being studied.
- 7 Understand the importance of dynamic aspects in the evaluation of metabolic problems, with special attention to the role of simulation in evaluating models.

Subject contents

Theme 1: Introduction to classical Bioinformatics. (5 H)

Genome sequencing and assembly. Genome annotation.

Bioinformatics of non coding genes. Genes to proteins.

Predicting properties of proteins. Omics bioinformatics techniques.

Theme 2: Introduction to Molecular Networks Bioinformatics (5 H)

Integration of information for inferring genetic and protein networks. Representation of networks.

Theme 3: Introduction to physiological predictions (10 h)

Representation of a network to predict the dynamic behavior. Mathematical Models of molecular systems.

Limitations of mathematical models of biological systems.

Examples of application of the different tools and methods to research problems.

Theme 4: Medical Informatics: Bioinformatics in health and disease (2h).

Epidemiology and efficiency of the health system. Management and monitoring of patients.

Assisted diagnosis.

Practical activities

- Laboratory practice in computer lab. (Pr)

These will be held simultaneously with all students and are mandatory. In practical activities groups will solve biological problems by applying theoretical concepts. The work will be done in groups of four students that will remain constant during the course.

Methodology

Type of activity	Description	Classroom Student work		Student Work outside of the classroom		Evaluation	Total Time
		Objectives	Hours	Student work	Hours	Hours	Hours
Lectures	Lecture (Class. Large group)	Explanation of the main concepts	22	Study: Learn, understand and synthesize knowledge	10	2	34
Problems and cases	Class participation (Class. Large group)	Problem solving	0	Learning how to solve problems	0		0
Seminars	Class participation (Medium- sized group)	Activities of discussion or implementation	0	Problem solving and discussion	0		0

Lab	Laboratory Practice (Medium- sized group)	Implementation of the practice: to fully understand, measure	0	Study and monography writing	0		0
Computer	Computer classroom practice (Mediumsized group)	Implementation of the practice: to fully understand, measure	28	Study and monography writing	110	1	139
Field Work	Practice Fieldwork (Medium- sized group)	Implementation of the practice: to fully understand, measure	0	Study and monography writing	0		0
Visits	Visit farms or industries	Making the Visit	0	Study and monography writing	0		0
Guided Activities	Student work (individual or group)	Guiding Student study (in tutoring hours)	0	bibliographic work, study, etc.	0		0
Others			1		1		1
Totals			50		120	3	174

Evaluation

Exams	Practice	Problem solving	Other activities
Final Exam 20%	70% (3 scoring activities, 23.33% each)	0	10%

Activity type	Grading System		Grading weight
Procedure		Number	(%)
Lectures	Written tests on theory syllabus	22	20
Problems and cases	Paper delivery or exams about test cases	0	
Seminars	Written or oral exams	0	
Lab	Paper delivery or exams about test cases	0	
Computer room	Paper delivery or exams about test cases	28	70
Field Work	Paper delivery or exams about test cases	0	
Visits	Paper delivery or exams about test cases	0	
Guided Activities	Paper delivery	0	
Others		1	10
Total			100

Observations

• In order to pass the course you must get at least 6 out of 10 in each work and on the final exam. 10% of the final grade depends on the discretion of the teacher.

Bibliography

Basic Bibliography

Alves, R., Vilaprinyo, E. & Sorribas, A. (2008) Integrative Computational Biology: Perspectives and Possibilities for in silico network reconstruction in Molecular Systems Biology. Current Bioinformatics, 3: 98-129

Gromiha, M. M. (2010) Protein bioinformatics: from sequence to function. Elsevier

Lesk, A. M. (2008) Introduction to Bioinformatics. Oxford

Lengauer, T. (2007) Bioinformatics: From genomes to therapies. Wiley

Savageau, M. A. (2010) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology, CreateSpace Press